8 research outputs found

    A 13-Gene Metabolic Prognostic Signature Is Associated With Clinical and Immune Features in Stomach Adenocarcinoma

    Get PDF
    Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice

    New type of borneol-based fluorine-free superhydrophobic antibacterial polymeric coating

    No full text
    A new type of superhydrophobic borneol-based polymeric coating has been prepared. The chemical composition of the polymer particles was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, which showed that the polymer did not contain fluorine, which can effectively avoid the cytotoxic risk of fluorine. By dynamic light scattering, scanning electron microscopy, and static contact angle measurement, the contact angle of the prepared coating gradually increased with increasing diameter of the polymer particles, and a superhydrophobic coating surface was finally obtained. Interestingly, after dissolving the superhydrophobic sample with tetrahydrofuran and making it a normal hydrophobic sample, the antiadhesion performance for E. coli was greatly reduced, and it could not effectively prevent E. coli adhesion. In addition, a long-term antiadhesion study of bacteria was performed. The superhydrophobic borneol-based polymer coating showed long-term resistance to E. coli adhesion. Therefore, the excellent antibacterial properties and cell compatibility mean that this series of polymer materials has great potential in the field of biomedicine

    Short-term survival and safety of apatinib combined with oxaliplatin and S-1 in the conversion therapy of unresectable gastric cancer

    No full text
    Abstract Background We conducted a single-arm phase II trial to investigate the short-term efficacy and safety of apatinib combined with oxaliplatin and S-1 in the treatment of unresectable gastric cancer. Patients and methods Previously untreated patients with unresectable HER-2-negative advanced gastric cancer were selected. All the patients received six cycles of S-1 and oxaliplatin and five cycles of apatinib, which were administered at intervals of three weeks. The surgery was performed after six cycles of drug treatment. The primary endpoints were radical resection (R0) rate and safety. This study was registered with the China Trial Register, number ChiCTR-ONC-17010430  (01/12/2016–01/12/2022). Results A total of 39 patients were enrolled. Efficacy evaluation was feasible for 37 patients. One patient achieved complete response (CR, 2.7%), 26 patients achieved partial response (PR, 70.3%), three patients had stable disease (SD, 8.1%) and seven patients had progressive disease (PD, 18.9%). The objective response rate (ORR) was 73.0% and the disease control rate (DCR) was 81.1%. 22 patients underwent surgery, among which 14 patients underwent radical resection (R0), with a R0 resection rate of 63.6%. The 1-year survival rate of the surgical group (22 patients) was 71.1% and the 2-year survival rate was 41.1%. The median survival time was 21 months. The incidence of adverse events (AEs) was 100%. Leucopenia (65.3%) and granulocytopenia (69.2%) were the most common hematological AEs. The most common non-hematological AEs were fatigue (51.3%) and oral mucositis (35.9%). Conclusion Apatinib combined with oxaliplatin and S-1 showed good short-term survival and acceptable safety in the conversion therapy of unresectable gastric cancer

    An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis

    No full text
    The authors find that the ciliopathy-associated protein Oral-Facial-Digital syndrome 1 functions as a class II nucleation promoting factor to drive actin filament branching, required for cell cycle progression. Interferring with this function suppresses cancer cell growth

    Study on Stability and Control of Surrounding Rock in the Stopping Space with Fully Mechanized Top Coal Caving under Goaf

    No full text
    Under the condition of fully mechanized top coal caving in close-distance coal seams, the surrounding rock of the stopping space easily loses stability during the withdrawal of mining equipment in the working face because the lower coal seam working face is located under the goaf and the overburden rock has a large range of complex interaction. Field investigation, theoretical analysis, laboratory experiment, similar simulation experiment, numerical simulation, and field industrial tests are used to carry out the research on the stability and control of the surrounding rock in the large section stopping space under the goaf in this paper. The research conclusions are as follows. (1) It is determined that the lower coal seam working face can only stop mining under the goaf, and the reasonable stopping position under the goaf should ensure that the key block fracture line of the main roof is behind the support. (2) The interaction law between the main roof’s key blocks of the upper and lower coal seams is analyzed, and the catastrophic conditions for sliding instability and rotary instability of the main roof’s key blocks of the upper and lower coal seams are obtained. (3) “Anchorage with push and pull equipment-Embedded anchorages and trays” integral anchoring technology is developed. The dimensions of the push and pull equipment are determined. (4) Through numerical simulation of the distribution characteristics of the anchor cable pre-stress field, the asymmetric control scheme of “Partition long and short anchor cables + Integral polyurethane mesh + Embedded anchorages and trays for roof protection” is determined. The rock pressure observation shows that the withdrawal of the working face equipment is implemented safely
    corecore