341 research outputs found

    Signatures of current loop coalescence in solar flares

    Get PDF
    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a solar flare. The physical characteristics of the explosive coalescence of currents are presented in detail through computer simulation and theory. Canonical characteristics of the explosive coalescence are: (1) a large amount of impulsive increase of kinetic energies of electrons and ions; (2) simultaneous heating and acceleration of electrons and ions in high and low energy spectra; (3) ensuing quasi-periodic amplitude oscillations in fields and particle quantities; and (4) the double peak (or triple peak) structure in these profiles, participate in the coalescence process, yielding varieties of phenomena

    PMP22 exon 4 deletion causes ER retention of PMP22 and a gain-of-function allele in CMT1E

    Get PDF
    OBJECTIVE: To determine whether predicted fork stalling and template switching (FoSTeS) during mitosis deletes exon 4 in peripheral myelin protein 22 KD (PMP22) and causes gain‐of‐function mutation associated with peripheral neuropathy in a family with Charcot–Marie–Tooth disease type 1E. METHODS: Two siblings previously reported to have genomic rearrangements predicted to involve exon 4 of PMP22 were evaluated clinically and by electrophysiology. Skin biopsies from the proband were studied by RT‐PCR to determine the effects of the exon 4 rearrangements on exon 4 mRNA expression in myelinating Schwann cells. Transient transfection studies with wild‐type and mutant PMP22 were performed in Cos7 and RT4 cells to determine the fate of the resultant mutant protein. RESULTS: Both affected siblings had a sensorimotor dysmyelinating neuropathy with severely slow nerve conduction velocities (<10 m/sec). RT‐PCR studies of Schwann cell RNA from one of the siblings demonstrated a complete in‐frame deletion of PMP22 exon 4 (PMP22Δ4). Transfection studies demonstrated that PMP22Δ4 protein is retained within the endoplasmic reticulum and not transported to the plasma membrane. CONCLUSIONS: Our results confirm that that FoSTeS‐mediated genomic rearrangement produced a deletion of exon 4 of PMP22, resulting in expression of both PMP22 mRNA and protein lacking this sequence. In addition, we provide experimental evidence for endoplasmic reticulum retention of the mutant protein suggesting a gain‐of‐function mutational mechanism consistent with the observed CMT1E in this family. PMP22Δ4 is another example of a mutated myelin protein that is misfolded and contributes to the pathogenesis of the neuropathy

    ă‚œăƒŒăƒ©ăƒŒăƒ•ăƒŹă‚ąăƒŒă«ăŠă‘ă‚‹é›»æ”ăƒ«ăƒŒăƒ—ăźă‚łă‚ąăƒŹăƒƒă‚»ăƒłă‚č

    Get PDF
    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a solar flare. The physical characteristics of the explosive coalescence of currents are presented in detail through computer simulation and theory.Canonical characteristics of the explosive coalescence are: (1) a large amount of impulsive increase of kinetic energies of electrons and ions, (2) simultaneous heating and acceleration of electrons and ions in high and low energy spectra, (3) ensuing quasi-periodic amplitude oscillations in fields and particle quantities, (4) the double peak (or triple peak) structure in these profiles, and (5) characteristic break in energy spectra of electrons and ions. A single pair of currents as well as multiple currents may participate in the coalescence process, yielding varieties of phenomena. These physical properties seem to underlie in some of impulsive solar flares.In particular, double sub-peak structures in the quasi-periodic oscillations found in the time profiles of two solar flares on June 7, 1980 and November 26, 1982 are well explained in terms of the coalescence instability of two current loops. This interpretation is supported by the observations of two microwave sources and their interaction for the November 26, 1982 flare.Some more details as well as a generalization of the present model to solar flares with the coalescence as an elementary process in the flare phenomenon are presented

    Considering Polymorphism in Change-Based Test Suite Reduction

    Full text link
    With the increasing popularity of continuous integration, algorithms for selecting the minimal test-suite to cover a given set of changes are in order. This paper reports on how polymorphism can handle false negatives in a previous algorithm which uses method-level changes in the base-code to deduce which tests need to be rerun. We compare the approach with and without polymorphism on two distinct cases ---PMD and CruiseControl--- and discovered an interesting trade-off: incorporating polymorphism results in more relevant tests to be included in the test suite (hence improves accuracy), however comes at the cost of a larger test suite (hence increases the time to run the minimal test-suite).Comment: The final publication is available at link.springer.co

    Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: A case series

    Get PDF
    Spinal muscular atrophy is treated with onasemnogene abeparvovec, which replaces the missing survival motor neuron 1 gene via an adeno-associated virus vector. As of July 1, 2020, we had identified 3 infants who developed thrombotic microangiopathy following onasemnogene abeparvovec. Early recognition and treatment of drug-induced thrombotic microangiopathy may lessen mortality and morbidity

    A new perturbative expansion of the time evolution operator associated with a quantum system

    Full text link
    A novel expansion of the evolution operator associated with a -- in general, time-dependent -- perturbed quantum Hamiltonian is presented. It is shown that it has a wide range of possible realizations that can be fitted according to computational convenience or to satisfy specific requirements. As a remarkable example, the quantum Hamiltonian describing a laser-driven trapped ion is studied in detail.Comment: 32 pages; modified version with examples of my previous paper quant-ph/0404056; to appear on the J. of Optics B: Quantum and Semiclassical Optics, Special Issue on 'Optics and Squeeze Transformations after Einstein

    Taming complexity of industrial printing systems using a constraint-based DSL: An industrial experience report

    Get PDF
    Flexible printing systems are highly complex systems that consist of printers, that print individual sheets of paper, and finishing equipment, that processes sheets after printing, for example, assembling a book. Integrating finishing equipment with printers involves the development of control software that configures the devices, taking hardware constraints into account. This control software is highly complex to realize due to (1) the intertwined nature of printing and finishing, (2) the large variety of print products and production options for a given product, and (3) the large range of finishers produced by different vendors. We have developed a domain-specific language called CSX that offers an interface to constraint solving specific to the printing domain. We use it to model printing and finishing devices and to automatically derive constraint solver-based environments for automatic configuration. We evaluate CSX on its coverage of the printing domain in an industrial context, and we report on lessons learned on using a constraint-based DSL in an industrial context
    • 

    corecore