27 research outputs found

    Lignin removal from Aqueous Solution using Calcium Lactate: the effect of Polymers and Magnesium Hydroxide as a Flocculant aids

    Get PDF
    Palm oil mill effluent (POME) which is mainly associated with lignin has becoming a major concern due to its highly coloured appearance. The main colourant, i.e. lignin particles are difficult to be degraded in oil palm conventional biological ponding system. Coagulation/flocculation could remove the lignin prior to biological treatment and is considered vital to minimize the recalcitrance nature of palm oil mill effluent particles. In this study, the coagulation/flocculation process was investigated to remove lignin particles from aqueous solution. A non-toxic and biodegradable chemical i.e. calcium lactate was utilized as a destabilizer for the removal of lignin with an addition of several flocculants aid i.e. anionic polyacrylamide (APAM), polydimethyldiallylammonium chloride (polyDADMAC) and magnesium hydroxide. The effect of coagulant and flocculant aids dosage was investigated. From this study, it was found that the optimum condition was at 0.7g/L of calcium lactate and 0.5-1.0mg/L of APAM with ~64% of lignin removal. At concentration of 4 mg/L, the removal of lignin for APAM and polyDADMAC is similar. This result shows that the calcium lactate has potential as a coagulant and the efficiency can be enhanced with an addition of polymeric flocculant aids

    Composting paper and grass clippings with anaerobically treated palm oil mill effluent

    Get PDF
    Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner

    Current progress on removal of recalcitrance coloured particles from anaerobically treated effluent using coagulation–flocculation

    Get PDF
    The palm oil industry is the most important agro industries in Malaysia and most of the mills adopt anaerobic digestion as their primary treatment for palm oil mill effluent (POME). Due to the public concern, decolourisation of anaerobically treated POME (AnPOME) is becoming a great concern. Presence of recalcitrant-coloured particles hinders biological processes and coagulation–flocculation may able to remove these coloured particles. Several types of inorganic and polymers-based coagulant/flocculant aids for coagulation–flocculation of AnPOME have been reviewed. Researchers are currently interested in using natural coagulant and flocculant aids. Modification of the properties of natural coagulant and flocculant aids enhanced coagulation–flocculation performance. Modelling and optimization of the coagulation–flocculation process have also been reviewed. Chemical sludge has the potential for plant growth that can be evaluated through pot trials and phytotoxicity test

    A review on the empty fruit bunch composting: life cycle analysis and the effect of amendment(s)

    Get PDF
    This chapter reviews the Life Cycle Assessment (LCA) and the effect of amendment(s) for empty fruit bunches composting. A Life Cycle Assessment (LCA) of empty fruit bunches EFB composting as a solid waste processing is presented. The LCA study by various investigators confirmed that composting is more really environmentally friendly based on the greenhouse gas reduction measurement. Successful composting of empty fruit bunches (EFB) and suitable amendment(s) and obtaining a product of horticultural value may increase the viability of this recycling approach. The EFB composting with suitable amendments has shown acceptable quality of compost and simultaneously accelerates the process to less than 60 days. Finally, a case study on utilization of banana skins as amendments is discussed. In the case study, the addition of banana skin could enhance rapid EFB decomposition and increase nutrients such as P and K. A 45 days experiment was conducted at a 100kg scale to observe decomposition processes in empty fruit bunch (EFB) amended with two different percentages of banana skins (BS) (H5 and H10, 5% and 10% of BS by weight, respectively) in comparison with the control (unamended EFB, i.e. H0). The temperature in the three points of the piles was recorded throughout the experiment. By day 3, the temperature in the substrates H10 exceeded 45°C while the highest temperature recorded in the control during the experiment was 39°C (day 22). In conclusion, banana skins have potential as amendment for enhancing EFB composting

    Zero waste management of spent mushroom compost

    Get PDF
    Edible mushroom are grown commercially using lignocellulosic waste by applying a biological process. However after the harvesting season about 70% of the substrate remain as a spent mushroom compost (SMC). SMC can be the source for retrieving value-added products which support zero waste approach. In this paper, the fate of SMC from agricultural production will be discussed focusing on its utilization. Based on the previous reports, major uses of SMC were in the agricultural field as mushroom media, animal feed, plant compost, fertilizer and others. Extended usage of SMC, i.e., for second cultivation is proposed in this review. In addition, the SMC was also applied in renewable energy production, e.g., feedstock for biogas, bioethanol or biohydrogen

    Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers

    Get PDF
    In this study, modification of Empty Fruit Bunch (EFB) fibers as a means to recover ammonianitrogen from a synthetic solution was investigated. Methods: The EFB fiber was modified using sodium hydroxide.Adsorption-desorption studies of ammonia nitrogen into the modified EFB fiber were investigated Findings: Theincrease in adsorption capacity was found to be proportional with the increase of pH up to 7, temperature and ammoniaconcentration. The maximum adsorption capacity is 0.53-10.89 mg/g. The attachment of ammonia nitrogen involves ionexchange-chemisorption. The maximum desorption capacity of 0.0999 mg/g. Applications: This study can be used as abaseline for designing a low cost adsorbent system for ammonia nitrogen recovery drainage and industrial wastewater aswell as EFBs-palm oil mill effluent composting

    Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    No full text
    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied

    Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology

    Get PDF
    High consumption of process water and water scarcity has motivated industry to reuse their wastewater. Membrane processes are vital to produce water for reuse from dyeing baths in the tanning industry. In this regard, synthetic dye was recognised as the major foulant. To minimise the membrane fouling, coagulation/flocculation process is an important pre-treatment. Due to the complex nature of the process involving dyes-coagulant, the modelling is challenging. In this study, statistical experimental design and response surface methodology, RSM, have been applied to optimize removal of C.I. Acid Black 210 dye from highly concentrated solutions by means of a coagulation/floculation process. Aluminium sulphate was used as the coagulant. Central composite design (CCD) using as input variables the experimental temperature, the concentration of aluminium sulphate and the initial pH of the solution have been considered. Based on the design of experiment the quadratic response surface models have been developed to link the output response, which is the dye removal factor, with the input variables via mathematical relationships. The constructed response model has been tested using the analysis of variance (ANOVA). A Monte Carlo simulation method has been conducted to determine the optimum operating conditions. The obtained optimal point corresponds to a temperature of 40 degrees C, a concentration of aluminium sulphate of 0.82 g/L and an initial pH value of 5.61. The maximal value of the dye removal obtained under optimal process conditions has been confirmed experimentally
    corecore