21 research outputs found

    Benchmarking homogenization algorithms for monthly data

    Get PDF
    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones

    Developmental mechanisms underlying differential claw expression in the autopodia of geckos

    Get PDF
    BACKGROUND: The limb and autopodium are frequently employed to study pattern formation during embryonic development, providing insights into how cells give rise to complex anatomical structures. With regard to the differentiation of structures at the distal tips of digits, geckos constitute an attractive clade, because within their ranks they exhibit multiple independent occurrences of claw loss and reduction, these being linked to the development of adhesive pads. The developmental patterns that lead to claw loss, however, remain undescribed. Among geckos, Tarentola is a genus characterized by large claws on digits III and IV of the manus and pes, with digits I, II, and V bearing only vestigial claws, or lacking them entirely. The variable expression of claws on different digits provides the opportunity to investigate the processes leading to claw reduction and loss within a single species. RESULTS: Here, we document the embryonic developmental dynamics that lead to this intraspecifically variable pattern, focusing on the cellular processes of proliferation and cell death. We find that claws initially develop on all digits of all autopodia, but, later in development, those of digits I, II, and V regress, leading to the adult condition in which robust claws are evident only on digits III and IV. Early apoptotic activity at the digit tips, followed by apoptosis of the claw primordium, premature ossification of the terminal phalanges, and later differential proliferative activity are collectively responsible for claw regression in particular digits. CONCLUSIONS: Claw reduction and loss in Tarentola result from differential intensities of apoptosis and cellular proliferation in different digits, and these processes have already had some effect before visible signs of claw development are evident. The differential processes persist through later developmental stages. Variable expression of iteratively homologous structures between digits within autopodia makes claw reduction and loss in Tarentola an excellent vehicle for exploring the developmental mechanisms that lead to evolutionary reduction and loss of structures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13227-015-0003-9) contains supplementary material, which is available to authorized users
    corecore