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Abstract.  The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization 
methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study 
for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because 
of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants 
provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted 
after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number 
of performance metrics including i) the centered root mean square error relative to the true homogeneous values at vari-
ous averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were 
computed both using the individual station series as well as the network average regional series. The performance of the 
contributions depends significantly on the error metric considered. Although relative homogenization algorithms typical-
ly improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-
art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. 
The study showed that currently automatic algorithms can perform as well as manual ones. 

Keywords:  Surface climate network, instrumental climate records; monthly temperature records; monthly precipitation 
records; surface stations; homogenization, benchmarking; blind validation study; surrogate data. 
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INTRODUCTION 

To study climate variability the original surface ob-
servations are indispensable, but these have to be 
treated with care. Long observational records always 
contain changes due to non-climatic factors as well. 
Such inhomogeneities can be either sudden jumps 
(breaks) or gradual trends in one station. In a recent 
paper [1], the methods to remove these factors were 
blindly tested on a benchmark temperature and pre-
cipitation dataset with inserted inhomogeneities. This 
abstract will present the main ideas from this study. 
All the most common and the most developed algo-
rithms were tested.   

Most surface stations are not operated for climatic 
purposes, but rather to meet the needs of weather fore-
casting, agriculture and hydrology [2]. Consequently, 
the average period between detected breaks in Western 
instrumental records is 15 to 20 years. The typical size 
of the breaks is of the same order as the climate 
change signal during the 20th century [3-7]. Specific 
inhomogeneities are typical for certain periods and 
common to many stations, these can collectively lead 
to artificial biases in climate trends across large re-
gions. Inhomogeneities are thus a significant source of 
uncertainty for the estimation of secular trends and de-
cadal-scale variability. 

To the general public, the best known inhomogene-
ity is probably the urban heat island effect. The tem-
perature in cities can be warmer than in the 
surrounding country side, especially during calm 
nights. As cities have grown they have encroached on 
the weather stations, raising the ambient temperature. 
It is not clear how important this effect is; the Austrian 
network even had a bias because the surrounding of 
the stations became less urban [8]. World wide the ad-
vent of aviation led to relocations of stations from cit-
ies to nearby, typically cooler, airports [9]. In general, 
relocations are an important cause of inhomogeneities.  

Inhomogeneities caused by changes in the screens 
that protect the instruments for radiation and wetting 
are also common [10]. In 19th century Europe it was 
common to use a metal screen in front of a window on 
a North facing wall. However, the building may warm 
the screen leading to higher temperature measure-
ments. When this problem was realized the cotton re-
gion shelter was introduced. Other typical causes of 
inhomogeneities are changes in the surrounding envi-
ronment, e.g., land use change and building activity. In 
recent times, the most important inhomogeneity is the 
change over to automatic weather stations [11]. 

HOMOGENIZATION 

Ideally, the date of a change of instruments, loca-
tions or observing practices would be documented and 
parallel measurements made with the original and the 
new set-up for several years [12]. By making parallel 
measurement with replicas of historical instruments, 
screens, etc., the influence of some historical inhomo-
geneities can still be studied today. 

Because you are never sure that your metadata is 
complete, statistical homogenization is necessary as 
well. The most commonly used principle to detect and 
remove the artificial changes is relative homogeniza-
tion [13]. This assumes that nearby stations are ex-
posed to almost the same climate signal, but not any 
non-climatic changes. By looking at the difference be-
tween nearby stations, the year to year variability of 
the climate is removed, as well as the regional climatic 
trend. In such a difference time series, a clear and per-
sistent jump can easily be detected and can only be 
due to changes in the measurement conditions. 

If there is a jump (break) in a difference time series 
of a pair of stations, it is not yet clear which of the two 
stations it belongs to. Furthermore, time series typical-
ly have more than just one jump. These two features 
make statistical homogenization a challenging and 
beautiful statistical problem. Homogenization algo-
rithms typically differ in how they solve these two 
fundamental problems.  

Traditionally, this first fundamental problem is 
solved in relative homogenization by comparing a 
candidate series with a composite reference time series 
computed from its neighboring stations. This compo-
site reference is assumed to be homogeneous due to 
averaging, which is only approximately true. The main 
research impetus for the last two decades has been the 
development of so-called direct homogenization algo-
rithms that also function with an inhomogeneous ref-
erence time series. 

Sometimes there are no other stations in the same 
climate region. In this case, sometimes absolute ho-
mogenization is applied and the inhomogeneities are 
detected in the time series of one station, i.e. without 
using a reference [14]. If there is a clear and large 
break at a certain date, such a break may be removed 
reasonably accurately, but smaller jumps and gradually 
occurring inhomogeneities (for instance due to the ur-
ban heat island or growing vegetation) cannot be dis-
tinguished from real natural variability and climate 
change. Data homogenized this way does not have the 
quality one may expect and should be used with much 
care. 
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BENCHMARKING 

The benchmark dataset mimics station networks 
and their data problems with unprecedented realism. 
Homogeneous data was generated using the so-called 
surrogate data approach, which reproduces the cross- 
and auto-correlation functions, as well as the non-
Gaussian distribution of climate observations [15, 16]. 
To this data random break-type inhomogeneities, as 
well as breaks that occur simultaneously in multiple 
stations, were added. Furthermore, local trends, which 
either continue at the end (to model for instance the 
urban heat island effect) or go back to baseline (to 
model growing vegetation that is cut back at the end) 
were inserted. The sizes of the breaks and local trends 
follow a normal distribution with a width of 0.8 °C for 
temperature [17], and 15 % for precipitation. Further, a 
stochastic nonlinear network-wide trend was added. 
The main novelty was that the test was blind. Further-
more, the benchmark was generated and the analysis 
of results was performed by independent researchers, 
who did not homogenize the data themselves. Every-
one was invited to homogenize the data; 25 homoge-
nized blind contributions were returned. 

RESULTS 

For a clear presentation of all results, the homoge-
nization methods used to homogenize the 25 contribu-
tions would have to be explained, this is not possible 
in the limited space of this abstract.  

To get a flavor of the results, see Figure 1. It shows 
the root mean square error of the centered monthly da-
ta. The time series are centered by subtracting the 
mean because homogenization aims to improve the 
temporal consistency of the data, not the absolute lev-
el. The first four contributions in Figure 1 —

ACMANT (Spain) [18], PRODIGE monthly (Meteo 
France) [19], USHCN main (NOAA, USA) [4] and 
MASH main (Hungarian weather service) [20, 21] — 
are all direct homogenization algorithms and clearly 
perform better than the traditionally used SNHT meth-
od [22], here exemplified by CSNHT.  

The USHCN contribution is unique in that it has 
almost no stations with a higher error after homogeni-
zation, the contribution also has many values exactly 
on the bisect (no changes performed) and it made only 
small changes to the network without any inserted 
breaks (values on the ordinate). It should be noted that 
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FIGURE 1.  Scatterplot of the centered RMSE before and after homogenization for selected contributions. The squares display 
the errors of the stations; the dots show the errors of the network mean (regional climate) time series. Points on the bisect indi-
cate no change, above the bisect the data is made more inhomogeneous, while below the bisect homogenization improved the 
homogeneity of the data. 
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the same plots for yearly mean temperature show 
many fewer data points above the bisect for all contri-
butions. The exception is absolute homogenization 
(PMFred abs) [23], which typically makes the bench-
mark data more inhomogeneous for both monthly and 
yearly mean values. 

The mean centered RMSE for the inhomogeneous 
monthly temperature station data is 0.57 °C. The best 
complete contribution reduced this error to 0.34 °C. 
The same numbers for precipitation are 10.6 mm and 
9.0 mm, respectively. On yearly and decadal scales the 
reduction in errors by homogenization is much larger. 
The CRMSE for the inhomogeneous annual tempera-
ture station data is 0.47 °C, whereas the best complete 
contribution reduced this error to 0.15 °C. The same 
numbers for precipitation are 7.3 mm and 4.7 mm.  

The RMSE of the linear trend estimate for the in-
homogeneous annual temperature station data is 
1.19 °C/100yr. The best complete contribution reduced 
this error to 0.32 °C/100yr. The same numbers for pre-
cipitation are 15 mm/100yr and 7.5 mm/100yr, respec-
tively.  

The probability a break is detected in the right year 
is modest, which is also due to the large number of 
small breaks inherent in normal break size distribution. 
The probability of false detection is typically (well) 
below 5 percent. The Peirce and Heidke skill scores 
are positive, that is the results are better than random. 
Interestingly, the best contributions with respect to 
CRMSE and trends are not necessarily the ones with 
best scores for detection. 

CONCLUSIONS AND OUTLOOK 

The first main conclusion is that relative homoge-
nization improves the temperature data; it reduces the 
root mean square error of the data and its linear trend 
coefficients and does not cause artificial climate 
trends. This conclusion can be stated with confidence 
because the test was blind and because of the realism 
of the data. The exceptions, where relative homogeni-
zation made the data more inhomogeneous, could 
mostly be explained by inexperienced users or be 
traced back to algorithms (or parts thereof) newly writ-
ten for this exercise. This points to an important disad-
vantage of blind studies: mistakes discovered after the 
results are shared with participants cannot be corrected 
anymore. The results confirm the theoretical expecta-
tion that statistical absolute homogenization has the 
potential to make climate data more inhomogeneous; it 
should be noted that the benchmark data may have 
been more difficult for absolute methods as real data is 
due to the strong nonlinear trends added to the net-
works. In contrast to the results for temperature the 
positive results for precipitation are more mixed, still 

all but one relative method did improve the station 
trends. Many inhomogeneities are documented. Had 
such documentation been provided for part of the 
breaks in the benchmark data, the errors would have 
been lower.  

The second main conclusion is that direct relative 
homogenization algorithms are clearly better than tra-
ditional ones. It needed a realistic benchmark dataset 
to see this difference with such clarity. With mathe-
matical argumentation, climatological reasoning and 
the benchmark metrics all pointing in the same direc-
tion, we thus strongly recommend the use of direct 
homogenization algorithms. 

The performance ranking of the homogenization 
methods depends on the error metric considered, on 
whether the root mean square error is computed on the 
monthly, yearly or decadal data and on whether it is 
computed on the station data or on the network mean 
climate signal. These rankings also do not correlate 
strongly with the error in the linear trend estimates (or 
break detection scores). In other words, it is difficult to 
compute one error metric that would signify the re-
maining error after homogenization for all climatic 
purposes. The computation and communication of the 
remaining uncertainties of homogenized data should 
be one of the research priorities for the coming years. 

We feel that benchmarking has helped the homog-
enization community to mature [24]. The discussions 
on the properties of the benchmark, the nature of in-
homogeneities in the various regions and on homoge-
nization methods, as well as the joint work on the 
same dataset helped to bring scientists closer together 
in a way that writing individual papers cannot. The In-
ternational Surface Temperature Initiative has started a 
follow-up benchmarking program for homogenization 
algorithms [25]. This benchmark will be global and be 
even more realistic, especially due to the inclusion of 
metadata, biased inhomogeneities and random missing 
data. 

Everyone is invited to download and analyze the 
benchmark dataset. The homogeneous, inhomogene-
ous and homogenized datasets are published in the in-
ternet. Another offspring of the Action is HOMER, an 
open-source state-of-the-art homogenization package 
based on the best methods. The package is written in R 
and also performs basic quality control. Furthermore a 
mailing list for researchers working on homogeniza-
tion has been started. All these resources can be ac-
cessed via the webpage of the Action, http://www.
homogenisation.org, which will be kept running for 
the coming years and which also contains an extensive 
bibliography.  

With advanced and well-validated statistical meth-
ods, the homogenization of annual and monthly station 
data is a mature field. The homogenization of daily da-
ta is still in its infancy, however. Daily data are essen-
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tial for studying extremes of weather and climate and 
therefore the basis for important political decisions 
with huge socio-economic consequences. For such 
studies the complete distribution needs to be homoge-
nized. Looking at the physical causes of inhomogenei-
ties, one would expect that many of them especially 
affect the tails of the distribution of the daily data. 
Likewise the IPCC AR4 report warns that changes in 
extremes are often more sensitive to inhomogeneous 
climate monitoring practices than changes in the mean 
[26]. This is of concern given that homogenization 
methods for daily data are often limited to adjustments 
on the mean of the distribution. Some correction algo-
rithms for the distribution do exist, but these only reli-
ably correct the first three moments and have currently 
only been applied to some networks and require highly 
correlated neighboring stations. A better understanding 
of the nature of daily inhomogeneities and better tools 
to correct them will be the main challenge for the com-
ing years. 
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