13 research outputs found

    Hardware Security Primitives using Passive RRAM Crossbar Array: Novel TRNG and PUF Designs

    Full text link
    With rapid advancements in electronic gadgets, the security and privacy aspects of these devices are significant. For the design of secure systems, physical unclonable function (PUF) and true random number generator (TRNG) are critical hardware security primitives for security applications. This paper proposes novel implementations of PUF and TRNGs on the RRAM crossbar structure. Firstly, two techniques to implement the TRNG in the RRAM crossbar are presented based on write-back and 50% switching probability pulse. The randomness of the proposed TRNGs is evaluated using the NIST test suite. Next, an architecture to implement the PUF in the RRAM crossbar is presented. The initial entropy source for the PUF is used from TRNGs, and challenge-response pairs (CRPs) are collected. The proposed PUF exploits the device variations and sneak-path current to produce unique CRPs. We demonstrate, through extensive experiments, reliability of 100%, uniqueness of 47.78%, uniformity of 49.79%, and bit-aliasing of 48.57% without any post-processing techniques. Finally, the design is compared with the literature to evaluate its implementation efficiency, which is clearly found to be superior to the state-of-the-art.Comment: To appear at ASP-DAC 202

    Integrated Architecture for Neural Networks and Security Primitives using RRAM Crossbar

    Full text link
    This paper proposes an architecture that integrates neural networks (NNs) and hardware security modules using a single resistive random access memory (RRAM) crossbar. The proposed architecture enables using a single crossbar to implement NN, true random number generator (TRNG), and physical unclonable function (PUF) applications while exploiting the multi-state storage characteristic of the RRAM crossbar for the vector-matrix multiplication operation required for the implementation of NN. The TRNG is implemented by utilizing the crossbar's variation in device switching thresholds to generate random bits. The PUF is implemented using the same crossbar initialized as an entropy source for the TRNG. Additionally, the weights locking concept is introduced to enhance the security of NNs by preventing unauthorized access to the NN weights. The proposed architecture provides flexibility to configure the RRAM device in multiple modes to suit different applications. It shows promise in achieving a more efficient and compact design for the hardware implementation of NNs and security primitives

    Ternary Arithmetic Logic Unit Design Utilizing Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM)

    No full text
    Due to the difficulties associated with scaling of silicon transistors, various technologies beyond binary logic processing are actively being investigated. Ternary logic circuit implementation with carbon nanotube field effect transistors (CNTFETs) and resistive random access memory (RRAM) integration is considered as a possible technology option. CNTFETs are currently being preferred for implementing ternary circuits due to their desirable multiple threshold voltage and geometry-dependent properties, whereas the RRAM is used due to its multilevel cell capability which enables storage of multiple resistance states within a single cell. This article presents the 2-trit arithmetic logic unit (ALU) design using CNTFETs and RRAM as the design elements. The proposed ALU incorporates a transmission gate block, a function select block, and various ternary function processing modules. The ALU design optimization is achieved by introducing a controlled ternary adder–subtractor module instead of separate adder and subtractor circuits. The simulations are analyzed and validated using Synopsis HSPICE simulation software with standard 32 nm CNTFET technology under different operating conditions (supply voltages) to test the robustness of the designs. The simulation results indicate that the proposed CNTFET-RRAM integration enables the compact circuit realization with good robustness. Moreover, due to the addition of RRAM as circuit element, the proposed ALU has the advantage of non-volatility

    Ternary full adder designs employing unary operators and ternary multiplexers

    No full text
    The design of the Ternary Full Adders (TFA) employing Carbon Nanotube Field-Effect Transistors (CNFET) has been widely presented in the literature. To obtain the optimal design of these ternary adders, we propose two new different designs, TFA1 with 59 CNFETs and TFA2 with 55 CNFETs, that use unary operator gates with two voltage supplies (Vdd and Vdd/2) to reduce the transistor count and energy consumption. In addition, this paper proposes two 4-trit Ripple Carry Adders (RCA) based on the two proposed TFA1 and TFA2; we use the HSPICE simulator and 32 nm CNFET to simulate the proposed circuits under different voltages, temperatures, and output loads. The simulation results show the improvements of the designs in a reduction of over 41% in energy consumption (PDP), and over 64% in Energy Delay Product (EDP) compared to the best recent works in the literature.Published versio

    Ternary Arithmetic Logic Unit Design Utilizing Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM)

    No full text
    Due to the difficulties associated with scaling of silicon transistors, various technologies beyond binary logic processing are actively being investigated. Ternary logic circuit implementation with carbon nanotube field effect transistors (CNTFETs) and resistive random access memory (RRAM) integration is considered as a possible technology option. CNTFETs are currently being preferred for implementing ternary circuits due to their desirable multiple threshold voltage and geometry-dependent properties, whereas the RRAM is used due to its multilevel cell capability which enables storage of multiple resistance states within a single cell. This article presents the 2-trit arithmetic logic unit (ALU) design using CNTFETs and RRAM as the design elements. The proposed ALU incorporates a transmission gate block, a function select block, and various ternary function processing modules. The ALU design optimization is achieved by introducing a controlled ternary adder–subtractor module instead of separate adder and subtractor circuits. The simulations are analyzed and validated using Synopsis HSPICE simulation software with standard 32 nm CNTFET technology under different operating conditions (supply voltages) to test the robustness of the designs. The simulation results indicate that the proposed CNTFET-RRAM integration enables the compact circuit realization with good robustness. Moreover, due to the addition of RRAM as circuit element, the proposed ALU has the advantage of non-volatility

    Design and Optimization of High Performance P3HT: PCBM Polymer Solar Cell Using P3HT Buffer Layer

    No full text
    In this paper, a novel structure of multilayer organic photovoltaic cell has been designed and simulated. The integration of Poly(3-hexylthiophene-2,5-diyl) (P3HT) buffer layer and Poly(9,9-bis(3’-(N,N-dimethyl) N- ethylammoinium propyl-2,7-fluorene)-alt-2,7-(9,9 dioctyl fluorene)) dibromide (PFN:BR) electron transport layer (ETL) in the proposed solar cell has improved the performance significantly. The various performance measuring parameters like power conversion efficiency (PCE), short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), quantum efficiency (QE) have improved significantly. Furthermore, the effect of different layer thickness, the density of traps NtN_{t} and temperature on the proposed solar cell has been studied and the optimum value has been obtained. It has been observed that after optimizing the different parameters of the proposed structure, the performance measuring parameters shows an improvement of 14%, 33.3%, 200% and 300% in Voc FF, Jsc and PCE respectively over the reported organic solar cells. Further, a QE of about 90% is achieved in the proposed structure

    Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing

    No full text
    The modern-day computing technologies are continuously undergoing a rapid changing landscape; thus, the demands of new memory types are growing that will be fast, energy efficient and durable. The limited scaling capabilities of the conventional memory technologies are pushing the limits of data-intense applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Resistive random access memory (RRAM) is one of the most suitable emerging memory technologies candidates that have demonstrated potential to replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. RRAM has grown in prominence in the recent years due to its simple structure, long retention, high operating speed, ultra-low-power operation capabilities, ability to scale to lower dimensions without affecting the device performance and the possibility of three-dimensional integration for high-density applications. Over the past few years, research has shown RRAM as one of the most suitable candidates for designing efficient, intelligent and secure computing system in the post-CMOS era. In this manuscript, the journey and the device engineering of RRAM with a special focus on the resistive switching mechanism are detailed. This review also focuses on the RRAM based on two-dimensional (2D) materials, as 2D materials offer unique electrical, chemical, mechanical and physical properties owing to their ultrathin, flexible and multilayer structure. Finally, the applications of RRAM in the field of neuromorphic computing are presented.Published versionThis work was funded by Yayasan Universiti Teknologi PETRONAS (YUTP)-Fundamental Research Grant with cost centre 015LC0-245, and part of this research was carried out with the support of Grant NRF-CRP21-2018-0003

    Carbon nanotube field effect transistor (CNTFET) and resistive random access memory (RRAM) based ternary combinational logic circuits

    Get PDF
    The capability of multiple valued logic (MVL) circuits to achieve higher storage density when compared to that of existing binary circuits is highly impressive. Recently, MVL circuits have attracted significant attention for the design of digital systems. Carbon nanotube field effect transistors (CNTFETs) have shown great promise for design of MVL based circuits, due to the fact that the scalable threshold voltage of CNTFETs can be utilized easily for the multiple voltage designs. In addition, resistive random access memory (RRAM) is also a feasible option for the design of MVL circuits, owing to its multilevel cell capability that enables the storage of multiple resistance states within a single cell. In this manuscript, a design approach for ternary combinational logic circuits while using CNTFETs and RRAM is presented. The designs of ternary half adder, ternary half subtractor, ternary full adder, and ternary full subtractor are evaluated while using Synopsis HSPICE simulation software with standard 32 nm CNTFET technology under different operating conditions, including different supply voltages, output load variation, and different operating temperatures. Finally, the proposed designs are compared with the state-of-the-art ternary designs. Based on the obtained simulation results, the proposed designs show a significant reduction in the transistor count, decreased cell area, and lower power consumption. In addition, due to the participation of RRAM, the proposed designs have advantages in terms of non-volatility

    Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM) based ternary combinational logic circuits

    No full text
    The capability of multiple valued logic (MVL) circuits to achieve higher storage density when compared to that of existing binary circuits is highly impressive. Recently, MVL circuits have attracted significant attention for the design of digital systems. Carbon nanotube field effect transistors (CNTFETs) have shown great promise for design of MVL based circuits, due to the fact that the scalable threshold voltage of CNTFETs can be utilized easily for the multiple voltage designs. In addition, resistive random access memory (RRAM) is also a feasible option for the design of MVL circuits, owing to its multilevel cell capability that enables the storage of multiple resistance states within a single cell. In this manuscript, a design approach for ternary combinational logic circuits while using CNTFETs and RRAM is presented. The designs of ternary half adder, ternary half subtractor, ternary full adder, and ternary full subtractor are evaluated while using Synopsis HSPICE simulation software with standard 32 nm CNTFET technology under different operating conditions, including different supply voltages, output load variation, and different operating temperatures. Finally, the proposed designs are compared with the state-of-the-art ternary designs. Based on the obtained simulation results, the proposed designs show a significant reduction in the transistor count, decreased cell area, and lower power consumption. In addition, due to the participation of RRAM, the proposed designs have advantages in terms of non-volatility
    corecore