37 research outputs found

    LIP expression is regulated by IGF-1R signaling and participates in suppression of anoikis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor, CCAAT enhancer binding protein-β (C/EBPβ), is expressed as several distinct protein isoforms (LAP1, LAP2 and LIP) that have opposing actions in cellular proliferation and differentiation. Increases in the ratio of LIP/LAP are associated with aggressive, metastatic breast cancer; however, little is known regarding the molecular mechanisms that regulate LIP expression or the biological actions of an increase in the LIP/LAP ratio. Metastasis is highly dependent upon the suppression of anoikis and the role of C/EBPβ and LIP in this anchorage-independent, survival process is currently not known in mammary epithelial cells. IGF-1R signaling is important for the survival of breast cancer cells and crosstalk between IGF-1R and EGFR signaling pathways have been implicated in the development of more aggressive disease. We therefore evaluated in mammary epithelial cells whether IGF-1R signaling regulates the LIP/LAP ratio, analyzed the potential interplay between EGFR and IGF-1R signaling and addressed the biological significance of increased LIP expression in cellular survival and suppression of anoikis.</p> <p>Results</p> <p>Our data provide the first evidence that IGF-1R signaling regulates LIP expression in an EGFR independent manner to increase the LIP/LAP ratio in mammary epithelial cells. Although crosstalk between IGF-1R signaling and EGFR signaling is detectable in MCF10A cells, this crosstalk is not required for the IGF-1 mediated regulation of LIP expression. Rather, the critical regulator of IGF-1 induced LIP expression appears to be EGFR-independent, Akt activity. Our data also demonstrate that increases in LIP expression promote cell survival via suppression of anoikis. Likewise, knockdown of total C/EBPβ leads to increased cell death and suggest that C/EBPβ expression is important for survival and resistance to anoikis. IGF-1 treatment can partially rescue vector control cells from anoikis; however, cells with reduced C/EBPβ expression do not survive anoikis.</p> <p>Conclusions</p> <p>Taken together, our data demonstrate that IGF-1R signaling regulates LIP expression in an EGFR independent manner to increase the LIP/LAP ratio in mammary epithelial cells. C/EBPβ expression and elevations in LIP play an important role in regulating cellular survival via suppression of anoikis, in an IGF-1R mediated context or in a manner independent of IGF-1R signaling.</p

    Alterations of immune response of non-small lung cancer with azacytidine

    Get PDF
    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade

    ErbB receptors and their ligands in the breast

    No full text

    Epidermal Growth Factor Receptor Stimulation Activates the RNA Binding Protein CUG-BP1 and Increases Expression of C/EBPβ-LIP in Mammary Epithelial Cells

    No full text
    The transcription factor CCAAT/enhancer binding protein β (C/EBPβ) is a key regulator of growth and differentiation in many tissues. C/EBPβ is expressed as several distinct protein isoforms (LAP1, LAP2, and LIP) whose expression is regulated by alternative translational initiation at downstream AUG start sites. The dominant-negative LIP isoform is predominantly expressed during proliferative cellular responses and is associated with aggressive tumors. In this study, we investigated a mechanism by which the LIP isoform is translationally regulated in mammary epithelial cells. We have demonstrated that LIP expression is increased in response to activation of the epidermal growth factor receptor (EGFR) signaling pathway and that the increased expression of LIP is regulated in part by an RNA binding protein referred to as CUG repeat binding protein (CUG-BP1). Our data demonstrate that EGFR signaling results in the phosphorylation of CUG-BP1 and this leads to an increase in the binding of CUG-BP1 to C/EBPβ mRNA and elevated expression of the LIP isoform. Phosphorylation is necessary for the binding activity of CUG-BP1 and the consequent increase in LIP expression, as determined by binding assays and a cell free, transcription-coupled translation system. CUG-BP1 is thus a previously unidentified downstream target of EGFR signaling and represents a new translational regulator of LIP expression in human mammary epithelial cells

    Methylation of the Claudin 1 Promoter Is Associated with Loss of Expression in Estrogen Receptor Positive Breast Cancer

    Get PDF
    <div><p>Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 <i>via</i> DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA). Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.</p> </div
    corecore