187 research outputs found

    A measurement of the vibrational band strength for the upsilon sub 3 band of the HO2 radical

    Get PDF
    The HO2 radicals generated in a discharge-flow system were observed with tunable diode laser absorption in the P-branch of the nu(3) vibrationall band at 1080/cm. The observed line positions agree with those calculated from the molecular constants for the nu(3) bland obtained from a previous study using laser magnetic resonance spectroscopy. The band strength was determined by observing line center absoptions when HO2 is produced in the reaction F + H2O2 yields HO2 + HF (k1) with a measured concentration of atomic fluorine and excess hydrogen peroxide. F-atom concentrations are measured by diode laser absorption of the spin-orbit transition at 404/cm. The analysis accounts for HO2 losses due to the reactions of HO2 + HO2 yields H2O2 + O2 (k3) and F + HO2 yields HF + O2 (k4). The line strength for the 6(15) 7(16) F(1) transition is 2.9 x 10 to the 21st power sq cm/molecule/cm which corresponds to a nu(3) band strength of 34 +/- 9 sq/cm(STP atm). This value is a factor of 6 lower than previous ab initio calculations. These results will be useful in assessing the feasibility of atmospheric measurements of HO2 using infrared absorption techniques

    Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer

    Get PDF
    We have developed a mid‐infrared continuous‐wave quantum cascade laser direct‐absorption spectrometer (QCLS) capable of high frequency (≥1 Hz) measurements of 12CH4 and 13CH4 isotopologues of methane (CH4) with in situ 1‐s RMS image precision of 1.5 ‰ and Allan‐minimum precision of 0.2 ‰. We deployed this QCLS in a well‐studied New Hampshire fen to compare measurements of CH4 isoflux by eddy covariance (EC) to Keeling regressions of data from automated flux chamber sampling. Mean CH4 fluxes of 6.5 ± 0.7 mg CH4 m−2 hr−1 over two days of EC sampling in July, 2009 were indistinguishable from mean autochamber CH4 fluxes (6.6 ± 0.8 mgCH4 m−2 hr−1) over the same period. Mean image composition of emitted CH4 calculated using EC isoflux methods was −71 ± 8 ‰ (95% C.I.) while Keeling regressions of 332 chamber closing events over 8 days yielded a corresponding value of −64.5 ± 0.8 ‰. Ebullitive fluxes, representing ∼10% of total CH4 fluxes at this site, were on average 1.2 ‰ enriched in 13C compared to diffusive fluxes. CH4 isoflux time series have the potential to improve process‐based understanding of methanogenesis, fully characterize source isotopic distributions, and serve as additional constraints for both regional and global CH4 modeling analysis

    Stratospheric aircraft exhaust plume and wake chemistry studies

    Get PDF
    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3

    Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    Get PDF
    We present a novel spectral method to measure atmospheric carbon dioxide (CO2) with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument – ABsolute Carbon dioxide (ABC) is developed using this new approach. The instrument has a one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide

    Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign

    Get PDF
    A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NO<sub>x</sub> and selected VOC&apos;s sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NO<sub>x</sub>, NO<sub>y</sub>, NH<sub>3</sub>, H<sub>2</sub>CO, CH<sub>3</sub>CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered &quot;colectivos&quot; (public transportation buses that are intensively used in the MCMA) indicate that &ndash; in a mole per mole basis &ndash; have significantly larger NO<sub>x</sub> and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NO<sub>y</sub> showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S.&nbsp;cities. We estimate NO<sub>x</sub> emissions as 100 600&plusmn;29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NO<sub>x</sub> emissions estimated in the emissions inventory for this category are within the range of our estimated NO<sub>x</sub> annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas

    Stratospheric aircraft exhaust plume and wake chemistry

    Get PDF
    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's

    Canopy-Atmosphere Exchange of Carbon, Water and Energy at Harvard Forest EMS Tower since 1991

    Get PDF
    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling

    Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment

    No full text
    International audienceData from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring the ambient concentrations of NO2. Measurements of NO2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) and Differential Optical Absorption Spectroscopy (DOAS) instruments. A significant interference in the chemiluminescence measurement is shown to account for up to 50% of ambient NO2 concentration during afternoon hours. As expected, this interference correlates well with non-NOx reactive nitrogen species (NOz) as well as with ambient O3 concentrations, indicating a photochemical source for the interfering species. A combination of ambient gas phase nitric acid and alkyl and multifunctional alkyl nitrates is deduced to be the primary cause of the interference. Observations at four locations at varying proximities to emission sources indicate that the percentage contribution of HNO3 to the interference decreases with time as the air parcel ages. Alkyl and multifunctional alkyl nitrate concentrations are calculated to reach concentrations as high as several ppb inside the city, on par with the highest values previously observed in other urban locations. Averaged over the MCMA-2003 field campaign, the chemiluminescence monitor interference resulted in an average measured NO2 concentration up to 22% greater than that from co-located spectroscopic measurements. Thus, this interference has the potential to initiate regulatory action in areas that are close to non-attainment and may mislead atmospheric photochemical models used to assess control strategies for photochemical oxidants

    The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    Get PDF
    Spectroscopic measurements of atmospheric N<sub>2</sub>O and CH<sub>4</sub> mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1<i>σ</i> uncertainties of 2.47 ppb for CH<sub>4</sub> and 0.54 ppb for N<sub>2</sub>O are derived. We report a mean difference in 1 Hz CH<sub>4</sub> mole fraction of 2.05 ppb (1<i>σ</i> =  5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N<sub>2</sub>O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined
    corecore