833 research outputs found
On the Correlation between the Magnetic Activity Levels, the Metallicities and the Radii of Low-Mass Stars
The recent burst in the number of radii measurements of very low-mass stars
from eclipsing binaries and interferometry of single stars has opened more
questions about what can be causing the discrepancy between the observed radii
and the ones predicted by the models. The two main explanations being proposed
are a correlation between the radius of the stars and their activity levels or
their metallicities. This paper presents a study of such correlations using all
the data published to date. The study also investigates correlations between
the radii deviation from the models and the masses of the stars. There is no
clear correlation between activity level and radii for the single stars in the
sample. Those single stars are slow rotators with typical velocities v_rot sini
< 3.0 km s^-1. A clear correlation however exists in the case of the faster
rotating members of binaries. This result is based on the of X-ray emission
levels of the stars. There also appears to be an increase in the deviation of
the radii of single stars from the models as a function of metallicity, as
previously indicated by Berger et al. (2006). The stars in binaries do not seem
to follow the same trend. Finally, the Baraffe et al. (1998) models reproduce
well the radius observations below 0.30-0.35Msun, where the stars become fully
convective, although this result is preliminary since almost all the sample
stars in that mass range are slow rotators and metallicities have not been
measured for most of them. The results in this paper indicate that stellar
activity and metallicity play an important role on the determination of the
radius of very low-mass stars, at least above 0.35Msun.Comment: 22 pages, 4 figures. Accepted for publication on Ap
Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating
Traditionally stellar radiation has been the only heat source considered
capable of determining global climate on long timescales. Here we show that
terrestrial exoplanets orbiting low-mass stars may be tidally heated at high
enough levels to induce a runaway greenhouse for a long enough duration for all
the hydrogen to escape. Without hydrogen, the planet no longer has water and
cannot support life. We call these planets "Tidal Venuses," and the phenomenon
a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases
tidal heating. Hence, some planets may form with large eccentricity, with its
accompanying large tidal heating, and lose their water, but eventually settle
into nearly circular orbits (i.e. with negligible tidal heating) in the
habitable zone (HZ). However, these planets are not habitable as past tidal
heating desiccated them, and hence should not be ranked highly for detailed
follow-up observations aimed at detecting biosignatures. Planets orbiting stars
with masses <0.3 solar masses may be in danger of desiccation via tidal
heating. We apply these concepts to Gl 667C c, a ~4.5 Earth-mass planet
orbiting a 0.3 solar mass star at 0.12 AU. We find that it probably did not
lose its water via tidal heating as orbital stability is unlikely for the high
eccentricities required for the tidal greenhouse. As the inner edge of the HZ
is defined by the onset of a runaway or moist greenhouse powered by radiation,
our results represent a fundamental revision to the HZ for non-circular orbits.
In the appendices we review a) the moist and runaway greenhouses, b) hydrogen
escape, c) stellar mass-radius and mass-luminosity relations, d) terrestrial
planet mass-radius relations, and e) linear tidal theories. [abridged]Comment: 59 pages, 11 figures, accepted to Astrobiology. New version includes
an appendix on the water loss timescal
CMBfit: Rapid WMAP likelihood calculations with normal parameters
We present a method for ultra-fast confrontation of the WMAP cosmic microwave
background observations with theoretical models, implemented as a publicly
available software package called CMBfit, useful for anyone wishing to measure
cosmological parameters by combining WMAP with other observations. The method
takes advantage of the underlying physics by transforming into a set of
parameters where the WMAP likelihood surface is accurately fit by the
exponential of a quartic or sextic polynomial. Building on previous physics
based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines
their speed with precision cosmology grade accuracy. A Fortran code for
computing the WMAP likelihood for a given set of parameters is provided,
pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire
2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM
models. We also provide 7-parameter fits including spatial curvature,
gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in
Phys.Rev.D., a Fortran code can be downloaded from
http://space.mit.edu/home/tegmark/cmbfit
Three Wide-Separation L dwarf Companions from the Two Micron All Sky Survey: Gl 337C, Gl 618.1B, and HD 89744B
We present two confirmed wide separation L-dwarf common proper motion
companions to nearby stars and one candidate identified from the Two Micron All
Sky Survey. Spectral types from optical spectroscopy are L0 V, L2.5 V, and L8
V. Near-infrared low resolution spectra of the companions are provided as well
as a grid of known objects spanning M6 V -- T dwarfs to support spectral type
assignment for these and future L-dwarfs in the z'JHK bands. Using published
measurements, we estimate ages of the companions from physical properties of
the primaries. These crude ages allow us to estimate companion masses using
theoretical low-mass star and brown dwarf evolutionary models. The new L-dwarfs
in this paper bring the number of known wide-binary (Separation >= 100 AU)
L-dwarf companions of nearby stars to nine. One of the L-dwarfs is a wide
separation companion to the F7 IV-V + extrasolar planet system HD89744Ab.Comment: 20 pages including 6 tables and 4 figures, AJ, in pres
Calibrating the Mixing Length Parameter for a Red Giant Envelope
Two-dimensional hydrodynamical simulations were made to calibrate the mixing
length parameter for modeling red giant's convective envelope. As was briefly
reported in Asida & Tuchman (97), a comparison of simulations starting with
models integrated with different values of the mixing length parameter, has
been made. In this paper more results are presented, including tests of the
spatial resolution and Large Eddy Simulation terms used by the numerical code.
The consistent value of the mixing length parameter was found to be 1.4, for a
red giant of mass 1.2 solar-mass, core mass of 0.96 solar-mass, luminosity of
200 solar-luminosities, and metallicity Z=0.001.Comment: 18 pages, 1 table, 13 figures. Accepted for publication in Ap.
Understanding the nature of "superhard graphite"
Numerous experiments showed that on cold compression graphite transforms into
a new superhard and transparent allotrope. Several structures with different
topologies have been proposed for this phase. While experimental data are
consistent with these models, the only way to solve this puzzle is to find
which structure is kinetically easiest to form. Using state-of-the-art
molecular-dynamics transition path sampling simulations, we investigate kinetic
pathways of the pressure-induced transformation of graphite to various
superhard candidate structures. Unlike hitherto applied methods for elucidating
nature of superhard graphite, transition path sampling realistically models
nucleation events necessary for physically meaningful transformation kinetics.
We demonstrate that nucleation mechanism and kinetics lead to -carbon as the
final product. -carbon, initially competitor to -carbon, is ruled out by
phase growth. Bct-C structure is not expected to be produced by cold
compression due to less probable nucleation and higher barrier of formation
The blue stragglers formed via mass transfer in old open clusters
In this paper, we present the simulations for the primordial blue stragglers
in the old open cluster M67 based on detailed modelling of the evolutionary
processes. The principal aim is to discuss the contribution of mass transfer
between the components of close binaries to the blue straggler population in
M67. First, we followed the evolution of a binary of 1.4M+0.9M.
The synthetic evolutionary track of the binary system revealed that a
primordial blue straggler had a long lifetime in the observed blue straggler
region of color-magnitude diagram. Second, a grid of models for close binary
systems experiencing mass exchange were computed from 1Gyr to 6Gyr in order to
account for primordial blue-straggler formation in a time sequence. Based on
such a grid, Monte-Carlo simulations were applied for the old open cluster M67.
Adopting appropriate orbital parameters, 4 primordial blue stragglers were
predicted by our simulations. This was consistent with the observational fact
that only a few blue stragglers in M67 were binaries with short orbital
periods. An upper boundary of the primordial blue stragglers in the
color-magnitude diagram (CMD) was defined and could be used to distinguish blue
stragglers that were not formed via mass exchange. Using the grid of binary
models, the orbital periods of the primordial BSs could be predicted. Compared
with the observations, it is clear that the mechanism discussed in this work
alone cannot fully predict the blue straggler population in M67. There must be
several other processes also involved in the formation of the observed blue
stragglers in M67.Comment: 11 pages, 6 figures, A&A accepte
Reionization: Characteristic Scales, Topology and Observability
Recently the numerical simulations of the process of reionization of the
universe at z>6 have made a qualitative leap forward, reaching sufficient sizes
and dynamic range to determine the characteristic scales of this process. This
allowed making the first realistic predictions for a variety of observational
signatures. We discuss recent results from large-scale radiative transfer and
structure formation simulations on the observability of high-redshift Ly-alpha
sources. We also briefly discuss the dependence of the characteristic scales
and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space
Science special issue "Space Astronomy: The UV window to the Universe",
proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the
Universe'' in El Escorial (Spain
Refined parameters and spectroscopic transit of the super-massive planet HD147506b
In this paper, we report a refined determination of the orbital parameters
and the detection of the Rossiter-McLaughlin effect of the recently discovered
transiting exoplanet HD147506b (HAT-P-2b). The large orbital eccentricity at
the short orbital period of this exoplanet is unexpected and is distinguishing
from other known transiting exoplanets. We performed high-precision radial
velocity spectroscopic observations of HD147506 (HAT-P-2) with the new
spectrograph SOPHIE, mounted on the 1.93 m telescope at the Haute-Provence
observatory (OHP). We obtained 63 new measurements, including 35 on May 14 and
20 on June 11, when the planet was transiting its parent star. The radial
velocity (RV) anomaly observed illustrates that HAT-P-2b orbital motion is set
in the same direction as its parent star spin. The sky-projected angle between
the normal of the orbital plane and the stellar spin axis, \lambda = 0.2 +12.2
-12.5 deg, is consistent with zero. The planetary and stellar radii were
re-determined, yielding R_p = 0.951 +0.039 -0.053 R_Jup, R_s = 1.416 +0.040
-0.062 R_Sun. The mass M_p = 8.62 +0.39 -0.55 M_Jup and radius of HAT-P-2b
indicate a density of 12.5 +2.6 -3.6 g cm^{-3}, suggesting an object in between
the known close-in planets with typical density of the order of 1 g cm^{-3},
and the very low-mass stars, with density greater than 50 g cm^{-3}.Comment: Submitted to A&A; V2: Replaced by accepted versio
- …
