3,533 research outputs found

    A Robust Measure of Tidal Circularization in Coeval Binary Populations: The solar-type spectroscopic Binary Population in The Open Cluster M35

    Full text link
    We present a new homogeneous sample of 32 spectroscopic binary orbits in the young (~ 150 Myr) main-sequence open cluster M35. The distribution of orbital eccentricity vs. orbital period (e-log(P)) displays a distinct transition from eccentric to circular orbits at an orbital period of ~ 10 days. The transition is due to tidal circularization of the closest binaries. The population of binary orbits in M35 provide a significantly improved constraint on the rate of tidal circularization at an age of 150 Myr. We propose a new and more robust diagnostic of the degree of tidal circularization in a binary population based on a functional fit to the e-log(P) distribution. We call this new measure the tidal circularization period. The tidal circularization period of a binary population represents the orbital period at which a binary orbit with the most frequent initial orbital eccentricity circularizes (defined as e = 0.01) at the age of the population. We determine the tidal circularizationperiod for M35 as well as for 7 additional binary populations spanning ages from the pre main-sequence (~ 3 Myr) to late main-sequence (~ 10 Gyr), and use Monte Carlo error analysis to determine the uncertainties on the derived circularization periods. We conclude that current theories of tidal circularization cannot account for the distribution of tidal circularization periods with population age.Comment: 37 pages, 9 figures, to be published in The Astrophysical Journal, February 200

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Identifying orthologs with OMA: A primer [version 1; peer review: 2 approved]

    Get PDF
    The Orthologous Matrix (OMA) is a method and database that allows users to identify orthologs among many genomes. OMA provides three different types of orthologs: pairwise orthologs, OMA Groups and Hierarchical Orthologous Groups (HOGs). This Primer is organized in two parts. In the first part, we provide all the necessary background information to understand the concepts of orthology, how we infer them and the different subtypes of orthology in OMA, as well as what types of analyses they should be used for. In the second part, we describe protocols for using the OMA browser to find a specific gene and its various types of orthologs. By the end of the Primer, readers should be able to (i) understand homology and the different types of orthologs reported in OMA, (ii) understand the best type of orthologs to use for a particular analysis; (iii) find particular genes of interest in the OMA browser; and (iv) identify orthologs for a given gene.  The data can be freely accessed from the OMA browser at https://omabrowser.org

    Identifying orthologs with OMA: A primer.

    Get PDF
    The Orthologous Matrix (OMA) is a method and database that allows users to identify orthologs among many genomes. OMA provides three different types of orthologs: pairwise orthologs, OMA Groups and Hierarchical Orthologous Groups (HOGs). This Primer is organized in two parts. In the first part, we provide all the necessary background information to understand the concepts of orthology, how we infer them and the different subtypes of orthology in OMA, as well as what types of analyses they should be used for. In the second part, we describe protocols for using the OMA browser to find a specific gene and its various types of orthologs. By the end of the Primer, readers should be able to (i) understand homology and the different types of orthologs reported in OMA, (ii) understand the best type of orthologs to use for a particular analysis; (iii) find particular genes of interest in the OMA browser; and (iv) identify orthologs for a given gene. The data can be freely accessed from the OMA browser at https://omabrowser.org

    Cosmic Microwave Background constraints of decaying dark matter particle properties

    Full text link
    If a component of cosmological dark matter is made up of massive particles - such as sterile neutrinos - that decay with cosmological lifetime to emit photons, the reionization history of the universe would be affected, and cosmic microwave background anisotropies can be used to constrain such a decaying particle model of dark matter. The optical depth depends rather sensitively on the decaying dark matter particle mass m_{dm}, lifetime tau_{dm}, and the mass fraction of cold dark matter f that they account for in this model. Assuming that there are no other sources of reionization and using the WMAP 7-year data, we find that 250 eV < m_{dm} < 1 MeV, whereas 2.23*10^3 yr < tau_{dm} < 1.23*10^18 yr. The best fit values for m_{dm} and tau_{dm}/f are 17.3 keV and 2.03*10^16 yr respectively.Comment: 17 pages, 3 figure

    Implications of a Sub-Threshold Resonance for Stellar Beryllium Depletion

    Get PDF
    Abundance measurements of the light elements lithium, beryllium, and boron are playing an increasingly important role in the study of stellar physics. Because these elements are easily destroyed in stars at temperatures 2--4 million K, the abundances in the surface convective zone are diagnostics of the star's internal workings. Standard stellar models cannot explain depletion patterns observed in low mass stars, and so are not accounting for all the relevant physical processes. These processes have important implications for stellar evolution and primordial lithium production in big bang nucleosynthesis. Because beryllium is destroyed at slightly higher temperatures than lithium, observations of both light elements can differentiate between the various proposed depletion mechanisms. Unfortunately, the reaction rate for the main destruction channel, 9Be(p,alpha)6Li, is uncertain. A level in the compound nucleus 10B is only 25.7 keV below the reaction's energetic threshold. The angular momentum and parity of this level are not well known; current estimates indicate that the resonance entrance channel is either s- or d-wave. We show that an s-wave resonance can easily increase the reaction rate by an order of magnitude at temperatures of approximately 4 million K. Observations of sub-solar mass stars can constrain the strength of the resonance, as can experimental measurements at lab energies lower than 30 keV.Comment: 9 pages, 1 ps figure, uses AASTeX macros and epsfig.sty. Reference added, typos corrected. To appear in ApJ, 10 March 199

    Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems

    Get PDF
    We investigate the existence and properties of equipotential surfaces and Lagrangian points in non-synchronous, eccentric binary star and planetary systems under the assumption of quasi-static equilibrium. We adopt a binary potential that accounts for non-synchronous rotation and eccentric orbits, and calculate the positions of the Lagrangian points as functions of the mass ratio, the degree of asynchronism, the orbital eccentricity, and the position of the stars or planets in their relative orbit. We find that the geometry of the equipotential surfaces may facilitate non-conservative mass transfer in non-synchronous, eccentric binary star and planetary systems, especially if the component stars or planets are rotating super-synchronously at the periastron of their relative orbit. We also calculate the volume-equivalent radius of the Roche lobe as a function of the four parameters mentioned above. Contrary to common practice, we find that replacing the radius of a circular orbit in the fitting formula of Eggleton (1983) with the instantaneous distance between the components of eccentric binary or planetary systems does not always lead to a good approximation to the volume-equivalent radius of the Roche-lobe. We therefore provide generalized analytic fitting formulae for the volume-equivalent Roche lobe radius appropriate for non-synchronous, eccentric binary star and planetary systems. These formulae are accurate to better than 1% throughout the relevant 2-dimensional parameter space that covers a dynamic range of 16 and 6 orders of magnitude in the two dimensions.Comment: 12 pages, 10 figures, 2 Tables, Accepted by the Astrophysical Journa

    The Binarity of Eta Carinae and its Similarity to Related Astrophysical Objects

    Full text link
    I examine some aspects of the interaction between the massive star Eta Carinae and its companion, in particular during the eclipse-like event, known as the spectroscopic event or the shell event. The spectroscopic event is thought to occur when near periastron passages the stellar companion induces much higher mass loss rate from the primary star, and/or enters into a much denser environment around the primary star. I find that enhanced mass loss rate during periastron passages, if it occurs, might explain the high eccentricity of the system. However, there is not yet a good model to explain the presumed enhanced mass loss rate during periastron passages. In the region where the winds from the two stars collide, a dense slow flow is formed, such that large dust grains may be formed. Unlike the case during the 19th century Great Eruption, the companion does not accrete mass during most of its orbital motion. However, near periastron passages short accretion episodes may occur, which may lead to pulsed ejection of two jets by the companion. The companion may ionize a non-negligible region in its surrounding, resembling the situation in symbiotic systems. I discuss the relation of some of these processes to other astrophysical objects, by that incorporating Eta Car to a large class of astrophysical bipolar nebulae.Comment: Updated version. ApJ, in pres

    Interacting Binaries with Eccentric Orbits. Secular Orbital Evolution Due To Conservative Mass Transfer

    Full text link
    We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momentum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular change of the orbital semi-major axis and eccentricity which are linearly proportional to the magnitude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function mass-transfer rate of 10^{-9} M_\sun {\rm yr}^{-1} at periastron yields orbital evolution timescales ranging from a few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Comparison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot, in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instantaneous circularization at the onset of mass transfer. The formalism presented can be incorporated in binary evolution and population synthesis codes to create a self-consistent treatment of mass transfer in eccentric binaries.Comment: 16 pages, 8 figures, Accepted by The Astrophysical Journa

    Tidal spin-up of stars in dense stellar cusps around massive black holes

    Get PDF
    We show that main-sequence stars in dense stellar cusps around massive black holes are likely to rotate at a significant fraction of the centrifugal breakup velocity due to spin-up by hyperbolic tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in soft encounters, and extrapolate these results to close and penetrating collisions using smoothed particle hydrodynamics simulations. We find that the spin-up falls off only slowly with distance from the black hole because the increased tidal coupling in slower collisions at larger distances compensates for the decrease in the stellar density. We apply our results to the stars near the massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60 times higher than is usual for such stars and may affect their subsequent evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap
    corecore