11 research outputs found

    An Overview of Diet and Physical Activity for Healthy Weight in Adolescents and Young Adults with Type 1 Diabetes: Lessons Learned from the ACT1ON Consortium

    Get PDF
    The prevalence of overweight and obesity in young people with type 1 diabetes (T1D) now parallels that of the general population. Excess adiposity increases the risk of cardiovascular disease, which is already elevated up to 10-fold in T1D, underscoring a compelling need to address weight management as part of routine T1D care. Sustainable weight management requires both diet and physical activity (PA). Diet and PA approaches must be optimized towards the underlying metabolic and behavioral challenges unique to T1D to support glycemic control throughout the day. Diet strategies for people with T1D need to take into consideration glycemic management, metabolic status, clinical goals, personal preferences, and sociocultural considerations. A major barrier to weight management in this high-risk population is the challenge of integrating regular PA with day-to-day management of T1D. Specifically, exercise poses a substantial challenge due to the increased risk of hypoglycemia and/or hyperglycemia. Indeed, about two-thirds of individuals with T1D do not engage in the recommended amount of PA. Hypoglycemia presents a serious health risk, yet prevention and treatment often necessitates the consumption of additional calories, which may prohibit weight loss over time. Exercising safely is a concern and challenge with weight management and maintaining cardiometabolic health for individuals living with T1D and many healthcare professionals. Thus, a tremendous opportunity exists to improve exercise participation and cardiometabolic outcomes in this population. This article will review dietary strategies, the role of combined PA and diet for weight management, current resources for PA and glucose management, barriers to PA adherence in adults with T1D, as well as findings and lessons learned from the Advancing Care for Type 1 Diabetes and Obesity Network (ACT1ON)

    Differences in Physiological Responses to Cardiopulmonary Exercise Testing in Adults With and Without Type 1 Diabetes: A Pooled Analysis

    Get PDF
    OBJECTIVE To investigate physiological responses to cardiopulmonary exercise (CPX) testing in adults with type 1 diabetes compared with age-, sex-, and BMI-matched control participants without type 1 diabetes.RESEARCH DESIGN AND METHODS We compared results from CPX tests on a cycle ergometer in individuals with type 1 diabetes and control participants without type 1 diabetes. Parameters were peak and threshold variables of VO2, heart rate, and power output. Differences between groups were investigated through restricted maximum likelihood modeling and post hoc tests. Differences between groups were explained by stepwise linear regressions (P < 0.05).RESULTS Among 303 individuals with type 1 diabetes (age 33 [interquartile range 22; 43] years, 93 females, BMI 23.6 [22; 26] kg/m2, HbA1c 6.9% [6.2; 7.7%] [52 (44; 61) mmol/mol]), VO2peak (32.55 [26.49; 38.72] vs. 42.67 ± 10.44 mL/kg/min), peak heart rate (179 [170; 187] vs. 184 [175; 191] beats/min), and peak power (216 [171; 253] vs. 245 [200; 300] W) were lower compared with 308 control participants without type 1 diabetes (all P < 0.001). Individuals with type 1 diabetes displayed an impaired degree and direction of the heart rate-to-performance curve compared with control participants without type 1 diabetes (0.07 [−0.75; 1.09] vs. 0.66 [−0.28; 1.45]; P < 0.001). None of the exercise physiological responses were associated with HbA1c in individuals with type 1 diabetes.CONCLUSIONS Individuals with type 1 diabetes show altered responses to CPX testing, which cannot be explained by HbA1c. Intriguingly, the participants in our cohort were people with recent-onset type 1 diabetes; heart rate dynamics were altered during CPX testing

    The Intestinal Microbiota and Short-Chain Fatty Acids in Association with Advanced Metrics of Glycemia and Adiposity Among Young Adults with Type 1 Diabetes and Overweight or Obesity

    Get PDF
    BACKGROUND: Comanagement of glycemia and adiposity is the cornerstone of cardiometabolic risk reduction in type 1 diabetes (T1D), but targets are often not met. The intestinal microbiota and microbiota-derived short-chain fatty acids (SCFAs) influence glycemia and adiposity but have not been sufficiently investigated in longstanding T1D. OBJECTIVES: We evaluated the hypothesis that an increased abundance of SCFA-producing gut microbes, fecal SCFAs, and intestinal microbial diversity were associated with improved glycemia but increased adiposity in young adults with longstanding T1D. METHODS: Participants provided stool samples at ≀4 time points (NCT03651622: https://clinicaltrials.gov/ct2/show/NCT03651622). Sequencing of the 16S ribosomal RNA gene measured abundances of SCFA-producing intestinal microbes. GC-MS measured total and specific SCFAs (acetate, butyrate, propionate). DXA (body fat percentage and percentage lean mass) and anthropometrics (BMI) measured adiposity. Continuous glucose monitoring [percentage of time in range (70-180 mg/dL), above range (>180 mg/dL), and below range (54-69 mg/dL)] and glycated hemoglobin (i.e., HbA1c) assessed glycemia. Adjusted and Bonferroni-corrected generalized estimating equations modeled the associations of SCFA-producing gut microbes, fecal SCFAs, and intestinal microbial diversity with glycemia and adiposity. COVID-19 interrupted data collection, so models were repeated restricted to pre-COVID-19 visits. RESULTS: Data were available for ≀45 participants at 101 visits (including 40 participants at 54 visits pre-COVID-19). Abundance of Eubacterium hallii was associated inversely with BMI (all data). Pre-COVID-19, increased fecal propionate was associated with increased percentage of time above range and reduced percentage of time in target and below range; and abundances of 3 SCFA-producing taxa (Ruminococcus gnavus, Eubacterium ventriosum, and Lachnospira) were associated inversely with body fat percentage, of which two microbes were positively associated with percentage lean mass. Abundance of Anaerostipes was associated with reduced percentage of time in range (all data) and with increased body fat percentage and reduced percentage lean mass (pre-COVID-19). CONCLUSIONS: Unexpectedly, fecal propionate was associated with detriment to glycemia, whereas most SCFA-producing intestinal microbes were associated with benefit to adiposity. Future studies should confirm these associations and determine their potential causal linkages in T1D.This study is registered at clinical.trials.gov (NCT03651622; https://clinicaltrials.gov/ct2/show/NCT03651622)

    Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA)

    Get PDF
    Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin‐dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes

    The competitive athlete with type 1 diabetes.

    Get PDF
    Regular exercise is important for health, fitness and longevity in people living with type 1 diabetes, and many individuals seek to train and compete while living with the condition. Muscle, liver and glycogen metabolism can be normal in athletes with diabetes with good overall glucose management, and exercise performance can be facilitated by modifications to insulin dose and nutrition. However, maintaining normal glucose levels during training, travel and competition can be a major challenge for athletes living with type 1 diabetes. Some athletes have low-to-moderate levels of carbohydrate intake during training and rest days but tend to benefit, from both a glucose and performance perspective, from high rates of carbohydrate feeding during long-distance events. This review highlights the unique metabolic responses to various types of exercise in athletes living with type 1 diabetes. Graphical abstract

    A quantitative model to ensure capacity sufficient for timely access to care in a remote patient monitoring program

    No full text
    Abstract Introduction Algorithm‐enabled remote patient monitoring (RPM) programs pose novel operational challenges. For clinics developing and deploying such programs, no standardized model is available to ensure capacity sufficient for timely access to care. We developed a flexible model and interactive dashboard of capacity planning for whole‐population RPM‐based care for T1D. Methods Data were gathered from a weekly RPM program for 277 paediatric patients with T1D at a paediatric academic medical centre. Through the analysis of 2 years of observational operational data and iterative interviews with the care team, we identified the primary operational, population, and workforce metrics that drive demand for care providers. Based on these metrics, an interactive model was designed to facilitate capacity planning and deployed as a dashboard. Results The primary population‐level drivers of demand are the number of patients in the program, the rate at which patients enrol and graduate from the program, and the average frequency at which patients require a review of their data. The primary modifiable clinic‐level drivers of capacity are the number of care providers, the time required to review patient data and contact a patient, and the number of hours each provider allocates to the program each week. At the institution studied, the model identified a variety of practical operational approaches to better match the demand for patient care. Conclusion We designed a generalizable, systematic model for capacity planning for a paediatric endocrinology clinic providing RPM for T1D. We deployed this model as an interactive dashboard and used it to facilitate expansion of a novel care program (4 T Study) for newly diagnosed patients with T1D. This model may facilitate the systematic design of RPM‐based care programs

    An Evaluation of Point-of-Care HbA1c, HbA1c Home Kits, and Glucose Management Indicator: Potential Solutions for Telehealth Glycemic Assessments

    No full text
    During the COVID-19 pandemic, fewer in-person clinic visits resulted in fewer point-of-care (POC) HbA1c measurements. In this sub-study, we assessed the performance of alternative glycemic measures that can be obtained remotely, such as HbA1c home kits and Glucose Management Indicator (GMI) values from Dexcom Clarity. Home kit HbA1c (n = 99), GMI, (n = 88), and POC HbA1c (n = 32) were collected from youth with T1D (age 9.7 &plusmn; 4.6 years). Bland&ndash;Altman analyses and Lin&rsquo;s concordance correlation coefficient (&#120588;c) were used to characterize the agreement between paired HbA1c measures. Both the HbA1c home kit and GMI showed a slight positive bias (mean difference 0.18% and 0.34%, respectively) and strong concordance with POC HbA1c (&#120588;c = 0.982 [0.965, 0.991] and 0.823 [0.686, 0.904], respectively). GMI showed a slight positive bias (mean difference 0.28%) and fair concordance (&#120588;c = 0.750 [0.658, 0.820]) to the HbA1c home kit. In conclusion, the strong concordance of GMI and home kits to POC A1c measures suggest their utility in telehealth visits assessments. Although these are not candidates for replacement, these measures can facilitate telehealth visits, particularly in the context of other POC HbA1c measurements from an individual
    corecore