47 research outputs found

    The Noise of Gravitons

    Full text link
    We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitational field, and can be calculated exactly in several interesting cases. For coherent states the noise is very small, but it can be greatly enhanced in thermal and (especially) squeezed states. Detection of this fundamental noise would constitute direct evidence for the quantization of gravity and the existence of gravitons.Comment: First prize in the Gravity Research Foundation Essay Competition. 6 page

    Covariant constraints for generic massive gravity and analysis of its characteristics

    Get PDF
    We perform a covariant constraint analysis of massive gravity valid for its entire parameter space, demonstrating that the model generically propagates five degrees of freedom; this is also verified by a new and streamlined Hamiltonian description. The constraint's covariant expression permits computation of the model's caustics. Although new features such as the dynamical Riemann tensor appear in the characteristic matrix, the model still exhibits the pathologies uncovered in earlier work: superluminality and likely acausalities.Comment: 26 pages LaTeX, references added, version to appear in Phys. Rev.

    From k-essence to generalised Galileons

    Full text link
    We determine the most general scalar field theories which have an action that depends on derivatives of order two or less, and have equations of motion that stay second order and lower on flat space-time. We show that those theories can all be obtained from linear combinations of Lagrangians made by multiplying a particular form of the Galileon Lagrangian by an arbitrary scalar function of the scalar field and its first derivatives. We also obtain curved space-time extensions of those theories which have second order field equations for both the metric and the scalar field. This provide the most general extension, under the condition that field equations stay second order, of k-essence, Galileons, k-Mouflage as well as of the kinetically braided scalars. It also gives the most general action for a scalar classicalizer, which has second order field equations. We discuss the relation between our construction and the Euler hierachies of Fairlie et al, showing in particular that Euler hierachies allow one to obtain the most general theory when the latter is shift symmetric. As a simple application of our formalism, we give the covariantized version of the conformal Galileon.Comment: 25 page
    corecore