16 research outputs found

    Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network

    Get PDF
    Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.European Cooperation in Science and Technology CA16205National Centre for Research and Development POIR.01.02.00-00-0011/17Ministry of Education, Youth and Sports of the Czech Republic TC19039, LTC18003Czech Science Foundation 18-00132

    Mechanisms of Drug Solubilization by Polar Lipids in Biorelevant Media

    No full text
    Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage in vitro GI tract model. The main trends were checked also with progesterone and danazol.Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (Tm) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease Tm, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their Tm was much higher than the temperature of the experiment (T = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, Tm Texp), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of Tm and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br /

    Solubilization of Itraconazole by Surfactants and Phospholipid-Surfactant Mixtures: Interplay of Amphiphile Structure, pH and Electrostatic Interactions

    No full text
    Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. 1H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules

    Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type

    No full text
    Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 ”m, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 ”m and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models

    Albendazole solution formulation via vesicle-to-micelle transition of phospholipid-surfactant aggregates

    No full text
    <p><b>Objective:</b> To reveal the physicochemical mechanisms governing the solubilization of albendazole in surfactant and phospholipid-surfactant solutions and, on this basis, to formulate clinically relevant dose of albendazole in solution suitable for parenteral delivery.</p> <p><b>Significance:</b> (1) A new drug delivery system for parenteral delivery of albendazole is proposed, offering high drug solubility and low toxicity of the materials used; (2) New insights on the role of surface curvature on albendazole solubilization in surfactant and surfactant-phospholipid aggregates are provided.</p> <p><b>Methods:</b> The effect of 17 surfactants and 6 surfactant-phospholipid mixtures on albendazole solubility was studied. The size of the colloidal aggregates was determined by light-scattering. The dilution stability of the proposed formulation was assessed by experiments with model human serum.</p> <p><b>Results:</b> Anionic surfactants increased very strongly drug solubility at pH = 3 (up to 4 mg/mL) due to strong electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. This effect was observed with all anionic surfactants studied, including sodium dodecyl sulfate, double chain sodium dioctylsulfosuccinate (AOT), and the bile salt sodium taurodeoxycholate. The phospholipid-surfactant mixture of 40% sodium dipalmitoyl-phosphatidylglycerol +60% AOT provided highest albendazole solubilization (4.4 mg/mL), smallest colloidal aggregate size (11 nm) and was stable to dilution with model human serum at (and above) 1:12 ratio.</p> <p><b>Conclusions:</b> A new albendazole delivery system with high drug load and low toxicity of the materials used was developed. The high solubility of albendazole was explained with vesicle-to-micelle transition due to the larger interfacial curvature preferred for albendazole solubilization locus.</p

    Lowering of cholesterol bioaccessibility and serum concentrations by saponins : In vitro and in vivo studies

    No full text
    <p>Using an in vitro digestion model, we studied the effect of six saponin extracts on the bioaccessibility of cholesterol and saturated fatty acids (SFAs). In the absence of saponins, around 78% of the available cholesterol was solubilized in the simulated intestinal fluids. The addition of two extracts, Quillaja Dry (QD) and Sapindin (SAP), was found to decrease cholesterol bioaccessibility to 19% and 44%, respectively. For both extracts, the main mechanism of this effect is the displacement of cholesterol molecules from the bile salt micelles, leading to formation of cholesterol precipitates that cannot pass through the mucus layer of the intestine. QD decreased strongly the SFA bioaccessibility as well, from 69 to 9%, due to formation of calcium-SFA precipitates, while SAP had no effect on SFA. We studied the in vivo activity of QD and SAP extracts by measuring serum cholesterol in mice fed with experimental diets within a 7-day period. Both extracts were found to prevent dietary hypercholesterolemia in mice fed on a cholesterol-rich diet. The other saponin extracts did not show any significant effect in vitro and, therefore, were not studied in vivo. The cholesterol lowering ability of Sapindin extract is reported for the first time in the current study. This journal is</p

    Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure

    No full text
    <p><b>Objective:</b> This study aims to clarify the role of surfactant and drug molecular structures on drug solubility in micellar surfactant solutions.</p> <p><b>Significance:</b> (1) Rationale for surfactant selection is provided; (2) the large data set can be used for validation of the drug solubility parameters used in oral absorption models.</p> <p><b>Methods:</b> Equilibrium solubility of two hydrophobic drugs and one model hydrophobic steroid in micellar solutions of 19 surfactants was measured by HPLC. The drug solubilization locus in the micelles was assessed by UV spectrometry.</p> <p><b>Results:</b> Danazol is solubilized much more efficiently than fenofibrate by ionic surfactants due to ion–dipole interactions between the charged surfactant head groups and the polar steroid backbone. Drug solubilization increases linearly with the increase of hydrophobic chain length for all studied surfactant types. Addition of 1–3 ethylene oxide (EO) units in the head group of dodecyl sulfate surfactants reduces significantly the solubilization of both studied drugs and decreases linearly the solubilization locus polarity of fenofibrate. The locus of fenofibrate solubilization is in the hydrophobic core of nonionic surfactant micelles and in the palisade layer of ionic surfactant micelles.</p> <p><b>Conclusions:</b> Highest drug solubility can be obtained by using surfactants molecules with long chain length coupled with hydrophilic head group that provides additional drug–surfactant interactions (i.e. ion–dipole) in the micelles.</p

    Effects of Emulsifier Charge and Concentration on Pancreatic Lipolysis. 1. In the Absence of Bile Salts

    No full text
    An in vitro study is performed with sunflower oil-in-water emulsions to clarify the effects of type of used emulsifier, its concentration, and reaction time on the degree of oil lipolysis, α. Anionic, nonionic, and cationic surfactants are studied as emulsifiers. For all systems, three regions are observed when surfactant concentration is scaled with the critical micelle concentration, <i>C</i><sub>S</sub>/cmc: (1) At <i>C</i><sub>S</sub> < cmc, α ≈ 0.5 after 30 min and increases up to 0.9 after 4 h. (2) At <i>C</i><sub>S</sub> ≈ 3 × cmc, α ≈ 0.15 after 30 min and increases steeply up to 0.9 after 2 h for the cationic and nonionic surfactants, whereas it remains around 0.2 for the anionic surfactants. (3) At <i>C</i><sub>S</sub> above certain threshold value, α = 0 for all studied surfactants, for reaction time up to 8 h. Additional experiments show that the lipase hydrolyzes molecularly soluble substrate (tributirin) at <i>C</i><sub>S</sub> ≫ cmc, which is a proof that these surfactants do not denature or block the enzyme active center. Thus, we conclude that the mechanism of enzyme inhibition by these surfactants is the formation of a dense adsorption layer on an oil drop surface, which displaces the lipase from direct contact with the triglycerides
    corecore