3 research outputs found

    Microglial activation and connectivity in Alzheimer disease and aging

    Get PDF
    OBJECTIVE Alzheimer disease (AD) is characterized by amyloid β (Aβ) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. Aβ and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns. METHODS We included 32 Aβ-positive early AD subjects (18 women, 14 men) and 18 Aβ-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [18 F]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity. RESULTS We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner. INTERPRETATION Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 2022

    Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies.

    Get PDF
    β-amyloid (Aβ) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aβ-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aβ (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aβ (AD: βT = 0.412 ± 0.196 vs. βA = 0.142 ± 0.123, p < 0.001; AD-CBS: βT = 0.385 ± 0.176 vs. βA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (βT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aβ related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases

    Additional file 1 of Associations between sex, body mass index and the individual microglial response in Alzheimer’s disease

    No full text
    Additional file 1: Table S1. Detailed regional z-scores of TSPO-PET and Aβ-PET for female and male AD patients in six Braak-stage regions of interest and four amyloidosis regions of interest. CI =95% confidence interval. P –values show false discovery rate (FDR) corrected significance levels for the comparison of medium and high affinity binders (ANOVA). Figure S1. Validation of late-phase [18F]PI-2620 tau-PET quantification via carotid artery image derived input function (IDIF). Images show IDIF derived volume of distribution (VT) of [18F]PI-2620 tau-PET for female and male AD patients and mixed sex cognitively normal individuals, presented as axial overlays on a standard magnetic resonance imaging template. Plots show correlation of tau-PET z-scores for Braak-stage regions I–VI with tau-PET VT. AD female n = 13, AD male n = 9, cognitively normal mixed sex n = 3
    corecore