216 research outputs found

    How specific is synchronous neuronal firing? : Poster presentation

    Get PDF
    Background Synchronous neuronal firing has been discussed as a potential neuronal code. For testing first, if synchronous firing exists, second if it is modulated by the behaviour, and third if it is not by chance, a large set of tools has been developed. However, to test whether synchronous neuronal firing is really involved in information processing one needs a direct comparison of the amount of synchronous firing for different factors like experimental or behavioural conditions. To this end we present an extended version of a previously published method NeuroXidence [1], which tests, based on a bi- and multivariate test design, whether the amount of synchronous firing above the chance level is different for different factors

    Experimental measurement of stress at a four-domain junction in lead zirconate titanate

    Get PDF
    A junction between two lamellar bands of ferroelectric domains in a lead zirconate titanate (PZT) ceramic is analysed using Kikuchi diffraction patterns in the transmission electron microscope. Indexing of the diffraction patterns allowed the determination of the 3D relative orientation of the 4 different domains at the junction and thus the characterisation of the domain boundaries. The local c/a ratio could also be determined from the misorientations at the domain boundaries. Analysis of the data showed that large stresses were concentrated at the junction, and that this is inevitable at such band junctions. Such stress concentrations could act as nuclei for cracking of the ceramic under additional loading in service, perhaps particularly as a consequence of extended electromechanical cycling. Moreover, the stresses would increase with increasing c/a making the issues all the more serious for Ti-rich compositions having larger c/a ratios

    Analysis of 3D-EBSD Datasets Obtained by FIB Tomography

    Get PDF

    Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5 at. pct W alloy

    Get PDF
    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling (∼95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ({001} {100}) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ({013} {100}). Low-temperature annealing produces a weak cube texture along with the {013} {100} component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the {013} {100} component. The difference in the relative strengths of the cube, and the {013} {100} components in the two materials is evident from the beginning of recrystallization in which more {013} {100} -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the {013} {100} grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation

    Deformation-induced microstructural banding in TRIP steels

    Get PDF
    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability

    In-situ nitriding of Fe<sub>2</sub>VAl during laser surface remelting to manipulate microstructure and crystalline defects

    Get PDF
    Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport and mechanical properties. Laser surface remelting can be used to modify the subsurface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channeling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties

    Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.</jats:p

    Crystal Plasticity and Fresh Lobster

    No full text
    Mechanics of few crystals Mechanics of many crystals 3D electron microscopy Chitin-composite

    Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel

    Get PDF
    We report the development of a fully automatic large-volume 3D electron backscatter diffraction (EBSD) system (ELAVO 3D), consisting of a scanning electron microscope (ZEISS crossbeam XB 1540) with a dedicated sample holder, an adapted polishing automaton (Saphir X-change, QATM), a collaborative robotic arm (Universal Robots UR5), and several in-house built devices. The whole system is orchestrated by an in-house designed software, which is also able to track the process and report errors. Except for the case of error, the system runs without any user interference. For the measurement of removal thickness, the samples are featured with markers put on the perpendicular lateral surface, cut by plasma focused ion beam (PFIB) milling. The individual effects of both 1  μm diamond suspension and oxide polishing suspension polishing were studied in detail. Coherent twin grain boundaries (GBs) were used as an internal standard to check the removal rates measured by the side markers. The two methods for Z-spacing measurements disagreed by about 10%, and the inaccurate calibration of the PFIB system was found to be the most probable reason for this discrepancy. The angular accuracy of the system was determined to be ∼2.5°, which can be significantly improved with more accurate Z-spacing measurements. When reconstructed grain boundary meshes are sufficiently smoothed, an angular resolution of ±4° is achieved. In a 3D EBSD dataset of a size of 587 × 476 × 72  μm3, we focused on the investigation of coincidence site lattice ∑9 GBs. While bearing predominantly a pure tilt character, ∑9 GBs can be categorized into three groups based on correlative 3D morphologies and crystallography. </jats:p
    corecore