82 research outputs found

    An investigation of film wavy structure in annular flow using two simultaneous LIF approaches

    Get PDF
    The paper is devoted to development and validation of film thickness measurement techniques in interfacial gas-liquid flows. The specific flow investigated here is that of downwards (co-flowing) annular flow in a vertical pipe, however, many of the observations and findings are transferable to similar flow geometries. Two advanced spatially resolved techniques, namely planar laser-induced fluorescence and brightness-based laser-induced fluorescence , are used simultaneously in the same area of interrogation. A single laser sheet is used to excite fluorescence along one longitudinal section of the pipe, and two cameras (one for each method) are placed at different angles to the plane of the laser sheet in order to independently recover the shape of the interface along this section. This allows us to perform a cross-validation of the two techniques and to analyse their respective characteristics, advantages and shortcomings

    Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment

    Get PDF
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process
    corecore