926 research outputs found

    Accessing the literature: using bibliographic databases to find journal articles. Part 1

    Get PDF
    Research in primary dental care, recertification, continuing professional development, lifelong learning, peer review and quality healthcare are all informed by the published literature. Dental practitioners can find out about reliable and up-to-date information available in the published literature by searching bibliographic databases. Published in two parts, this article describes the databases relevant to clinical dental practice and explains the generic skills required to search them effectively, focusing on MEDLINE, the database most relevant for the majority of dental practitioners, which is freely available via the World Wide Web (WWW). The article differentiates between sensitivity (maximum recall) and specificity (relevance of recall), and suggests how to identify a manageable number of relevant citations, how to save the citations, and how to obtain the full text. In part 2, the article concludes by alerting readers to some of the limitations and pitfalls of database-searching

    Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material

    Get PDF
    PURPOSE. The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. METHODS. Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. RESULTS. Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. CONCLUSIONS. hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation

    Body Context and Posture Affect Mental Imagery of Hands

    Get PDF
    Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively

    A Theoretical Analysis of How Segmentation of Dynamic Visualizations Optimizes Students' Learning

    Get PDF
    This article reviews studies investigating segmentation of dynamic visualizations (i.e., showing dynamic visualizations in pieces with pauses in between) and discusses two not mutually exclusive processes that might underlie the effectiveness of segmentation. First, cognitive activities needed for dealing with the transience of dynamic visualizations impose extraneous cognitive load, which may hinder learning. Segmentation may reduce the negative effect of this load by dividing animations into smaller units of information and providing pauses between segments that give students time for the necessary cognitive activities after each of those units of information. Second, event segmentation theory states that people mentally segment dynamic visualizations during perception (i.e., divide the information shown in pieces). Segmentation of dynamic visualisation could cue relevant segments to students, which may aid them in perceiving the structure underlying the process or procedure shown

    Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    Get PDF
    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed

    Timelines of past events: Reconstructive retrieval of temporal patterns

    Get PDF
    Most naturalistic events are temporally and structurally complex in that they comprise a number of elements and that each element may have different onset and offset times within the event. This study examined temporal information processing of complex patterns of partially overlapping stimulus events by using 2 tasks of temporal processing. Specifically, participants observed a pantomime in which 5 actors appeared on the scene for different periods of time. At test, they estimated the duration each actor was present or reconstructed the temporal pattern of the pantomime by drawing a timeline for each actor. Participants made large errors in the time estimation task, but they provided relatively accurate responses by using the timeline as a retrieval support. These findings suggest that temporal processing of complex asynchronous events is a challenging cognitive task, but that reliance on visuo-spatial retrieval support, possibly in combination with other temporal heuristics, may produce functional approximations of complex temporal patterns

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    Match-action: the role of motion and audio in creating global change blindness in film

    Get PDF
    An everyday example of change blindness is our difficulty to detect cuts in an edited moving-image. Edit Blindness (Smith & Henderson, 2008) is created by adhering to the continuity editing conventions of Hollywood, e.g. coinciding a cut with a sudden onset of motion (Match-Action). In this study we isolated the roles motion and audio play in limiting awareness of match-action cuts by removing motion before and/or after cuts in existing Hollywood film clips and presenting the clips with or without the original soundtrack whilst participants tried to detect cuts. Removing post-cut motion significantly decreased cut detection time and the probability of missing the cut. By comparison, removing pre-cut motion had no effect suggesting, contrary to the editing literature, that the onset of motion before a cut may not be as critical for creating edit blindness as the motion after a cut. Analysis of eye movements indicated that viewers reoriented less to new content across intact match-action cuts than shots with motion removed. Audio played a surprisingly large part in creating edit blindness with edit blindness mostly disappearing without audio. These results extend film editor intuitions and are discussed in the context of the Attentional Theory of Cinematic Continuity (Smith, 2012a)
    corecore