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Abstract This article reviews studies investigating segmentation of dynamic visualizations
(i.e., showing dynamic visualizations in pieces with pauses in between) and discusses two
not mutually exclusive processes that might underlie the effectiveness of segmentation.
First, cognitive activities needed for dealing with the transience of dynamic visualizations
impose extraneous cognitive load, which may hinder learning. Segmentation may reduce
the negative effect of this load by dividing animations into smaller units of information and
providing pauses between segments that give students time for the necessary cognitive
activities after each of those units of information. Second, event segmentation theory states
that people mentally segment dynamic visualizations during perception (i.e., divide the
information shown in pieces). Segmentation of dynamic visualisation could cue relevant
segments to students, which may aid them in perceiving the structure underlying the
process or procedure shown.
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Dynamic visualizations such as videos and animations are increasingly used in instructional
materials to visualize complex natural processes (e.g., the formation of lightning; Mayer &
Chandler 2001), mechanical systems (e.g., an electric motor; Mayer et al. 2003), and
different kinds of procedures (e.g., solving probability calculation problems, Spanjers et al.,
2010; or first aid: Arguel & Jamet 2009). Dynamic visualizations are seen as attractive for
students (e.g., Chandler 2009) and are usually expected to be more effective than static
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pictures because students can perceive changes over time rather than having to mentally
infer them (e.g., Hegarty et al. 2003; Lowe 1999). The general idea is that compared to
having to infer or imagine changes, perceiving changes frees up cognitive resources
(Hegarty et al.2003; Schnotz & Rasch 2005). However, research has shown that complex
dynamic visualizations are not always more effective for learning than static pictures (e.g.,
Hegarty et al. 2003; Mayer et al. 2005; Tversky et al. 2002), although for certain types of
tasks, dynamic visualizations seem to be more effective, especially demonstrations of
procedures involving human movement (Höffler & Leutner 2007; see also Van Gog et al.
2009).

To improve the effectiveness of complex dynamic visualizations, several design
measures have been proposed (for reviews, see Wouters et al. 2008; Wouters et al.
2007). Some of these measures involve the manipulation of characteristics of dynamic
visualizations. De Koning et al. (2009) reviewed ways to manipulate visuospatial
characteristics, such as visually highlighting certain parts of the dynamic visualization to
fix students' attention on those parts. Next to visuospatial characteristics, temporal
characteristics can be manipulated. For example, by segmentation, that is, showing
dynamic visualizations in segments. A segment is a piece of the dynamic visualization that
has an identifiable begin and end point.

Several studies examined the effects of segmentation of complex dynamic visualizations
on learning. In these studies, the segments were distinguished by inserting pauses between
them (Boucheix & Guignard 2005; Hasler et al. 2007; Mayer & Chandler 2001; Mayer et
al. 2003; Moreno 2007; Spanjers et al., 2010). Boucheix and Guignard (2005) compared
the effects on learning from different versions of a slideshow about gearing systems,
consisting of two wheels and a motor: a version in which students were able to start the
next slide or repeat the previous slide and a fast and slow version without learner control.
They found larger gains from pretest to posttest for students who could start the next slide
or repeat the previous one. In separate analyses for groups differing in prior knowledge, the
effect was only significant in the low prior knowledge group (i.e., an expertise reversal
effect; Kalyuga 2007). In the multimedia learning environment of Mayer et al. (2003), an
animated pedagogical agent explained the functioning of an electric motor with some
animations. In one condition, students could decide at the end of each segment when to
continue with the next segment as well as which segment to continue with or to repeat the
animation (if there was one). In the other condition, the same material was shown in a
continuous presentation. They found that students who studied the segmented learning
environment performed better on a transfer test, in which they had to use what they learned
to answer novel questions, than students in the other condition. Although these studies
provide some evidence that segmentation might be beneficial, the effects may have been
influenced by the learner control options that students were given in these studies (e.g., the
possibility to repeat slides or animations and/or to select the next segment) and the design
of the learning materials (e.g., a division in different slides).

In the studies of Moreno (2007), Mayer and Chandler (2001), and Hasler et al. (2007),
some learner control was also present in combination with segmentation, although to a
lesser extent: the dynamic visualisations stopped automatically at the end of each segment,
and the participants could decide when they wanted to continue with the next segment.
Moreno (2007) found that participants who studied a segmented version of an exemplary
classroom video (experiment 1) or animation (experiment 2) in which teaching skills were
modeled remembered more of the modelled behaviour, reported to invest less mental effort,
and experienced the learning materials as less difficult than participants who studied non-
segmented versions of the material. Mayer and Chandler (2001) found that students who
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learned with a segmented animation on the formation of lightning performed better on a
transfer test than students who learned with a non-segmented animation. Hasler et al.
(2007) compared four versions of their learning material on the causes of day and night: a
segmented animation, a non-segmented animation that students could pause at each
moment (i.e., with learner control), a non-segmented animation without learner control, and
a non-segmented audio-only version without learner control. Learning time was equalized
for the conditions by having students study the learning material repeatedly until 10 min
were over. Their results showed that learners who studied the segmented animation or the
animation that they could pause performed better on difficult test questions than students who
studied one of the two other versions of the material, even though most learners who could
pause the animation did not use that option. Although learners in these studies by Moreno
(2007), Mayer and Chandler (2001), and Hasler et al. (2007) had less control than the
learners in the studies of Boucheix and Guignard (2005) and Mayer et al. (2003), learner
control might still have influenced the effects of segmentation that were found.

In the study by Spanjers et al. (2010), segmentation was not combined with learner
control. They investigated the effects of segmented and non-segmented animations on
probability calculation procedures, and their segmented animations automatically paused
after each segment and automatically continued after 2 s. A significant interaction was
found between the effects of segmentation and prior knowledge: Students with lower levels
of prior knowledge learned more efficiently from segmented animations than from non-
segmented animations, while students with higher levels of prior knowledge learned equally
efficiently from non-segmented and segmented ones (i.e., an expertise reversal effect;
Kalyuga 2007).

These studies show that, at least for novices, segmentation may have positive effects on
learning from dynamic visualizations. But how can this effect be explained, or in other
words, what cognitive processes underlie this effect? We propose that two possible though
not mutually exclusive processes might be responsible: (1) segmentation reduces the high
cognitive load associated with information transience due to the fact that the dynamic
visualization is divided into smaller units of information and is paused several times that
yields extra time for processing those units, and (2) segmentation breaks the dynamic
visualization down into meaningful pieces, which may foster students' understanding of the
underlying structure of the depicted process or procedure. These processes will be
discussed in more detail in the next sections.

Reducing Information Transience

One main cause for why learning from dynamic visualizations is often not more effective
than learning from static pictures is that information in dynamic visualizations is usually
transient; that is, information is continuously replaced with new information, and what is
visible now makes way for other information presented in the next moment (Ayres & Paas
2007). Learning involves the construction of cognitive schemas, which are stored in long-
term memory. To construct those schemas, information from the dynamic visualizations
needs to be maintained and processed in working memory (Sweller et al. 1998). That is,
information elements need to be selected from the stream of information and then need to
be mentally integrated with information that was presented earlier and with prior
knowledge in order to form a representation from the shown information (Moreno &
Mayer 2007). Therefore, the limitations of working memory pose a bottleneck for learning
(Sweller 2010; Sweller et al. 1998).
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The time-based resource sharing model of working memory (Barrouillet & Camos 2007)
states that the focus of attention in working memory is capacity limited, which implies that
attention can be directed at only one cognitive activity at a time. Maintaining information
(i.e., refreshing memory traces) and processing information both require attention, which
has to be shared between these cognitive activities by rapidly and frequently switching
attention from one activity to the other. Cognitive load therefore depends not only on the
number of processes that are competing for attention but also on how fast processing needs
to be done (e.g., in a continuous dynamic visualization, information keeps coming in at a
very high pace) and how long the processing takes. Under conditions of high cognitive
load, some cognitive activities require attention during such a large proportion of the
available time that insufficient time remains for attending to other cognitive activities.

Cognitive load theory (Sweller 2010; Sweller et al. 1998; Van Merriënboer & Sweller
2005) makes a distinction between cognitive activities imposing intrinsic cognitive load and
cognitive activities imposing extraneous cognitive load. Maintaining and processing
information elements inherent to the learning content and the relations between those
elements impose intrinsic cognitive load on working memory. The higher the number of
information elements and relations between them, the higher the intrinsic cognitive load and
the more difficult the material is to learn. For example, an animation in which the names of
the different parts of an eye are sequentially presented is less complex than an animation in
which the changes occurring during accommodation of the eyes to see approaching objects
clearly are presented because in the former animation, the different parts can be learned
sequentially and in a relatively isolated manner, while in the latter, the relations and
interactions between different parts of the eye need to be learned as well. But the number of
interrelated information elements is not the sole determinant of intrinsic cognitive load.
Students' prior knowledge influences what constitutes a single information element. As
mentioned before, learning involves the construction of cognitive schemas, and a schema
can be handled in working memory as one single information element. Therefore, the same
learning materials impose less intrinsic load for students with higher levels of prior
knowledge than for students with lower levels of prior knowledge or no prior knowledge
(Sweller et al. 1998). Under conditions of very high intrinsic cognitive load, the number of
information elements and their relations that have to be maintained and processed in
working memory can be so high that insufficient time is available for attending to
maintenance and processing of all the elements and relations. Therefore, the cognitive load
theory recommends that intrinsic load of learning materials is optimized, that is, at a
difficulty level that is challenging but not too high (Sweller 2010; Schnotz & Kürschner
2007). Optimizing cognitive load implies that one decreases the complexity of the material
if the amount of intrinsic load might overload the learner's limited working memory, for
example, by requiring learners first to learn the information elements inherent to the
learning material without learning their relations and subsequently requiring them to learn
the relations between the previously learned information elements. It also implies increasing
the complexity of the material, if learners do not fully use their working memory resources,
for example, by requiring that learners not only learn a particular procedure but also under
which conditions they have to use that particular procedure (Sweller 2010). In other words,
one has to use tasks that are in the learner’s zone of proximal development (Vygotsky 1978;
see also Schnotz & Kürschner 2007).

Extraneous cognitive load is imposed by maintaining and processing activities that result
from a non-optimal design of learning materials (Sweller 2010; Sweller et al. 1998). For
example, to learn from dynamic visualizations, information from different points in time
needs to be mentally integrated, and when information is transient, this requires that
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information from a certain point in time is maintained in working memory and then linked
to information presented later (Lowe 1999). Moreover, new incoming information needs to
be processed while maintaining the previously presented information (e.g., Ayres & Paas
2007; Moreno & Mayer 2007). Such cognitive activities that impose extraneous load reduce
the time available for maintaining and processing activities that impose intrinsic cognitive
load, and as a consequence, learning may be hampered because insufficient time is left for
attending to these intrinsic maintenance and processing activities. This will happen
especially when animations are high in intrinsic load; when they are low in intrinsic load,
there may be sufficient time to attend to both processes that impose intrinsic and processes
that impose extraneous load. Therefore, on complex dynamic visualizations that are high in
intrinsic load, the need to attend to processes imposing extraneous load needs to be
decreased as much as possible so that learning will not be hampered (Sweller 2010; Sweller
et al. 1998).

In segmented dynamic visualizations, the stream of information is divided into smaller
units, and pauses between segments provide students with sufficient time to attend to
necessary cognitive activities on the bit of information presented in the previous segment,
without having to simultaneously attend to new incoming information (e.g., Mayer &
Moreno 2003; Moreno & Mayer 2007). Thus, segmentation reduces the harmful effects of
information transience in dynamic visualizations by reducing the co-occurrence of
processing activities, thereby reducing cognitive load at certain points in time (e.g., Ayres
& Paas 2007; Mayer & Moreno 2003; Moreno & Mayer 2007; Schnotz & Lowe 2008). It
should be noted that by providing pauses, segmentation does increase the total available
learning time. Yet, this does not imply that increased learning time causes the positive
effects on learning. It can be questioned, for example, whether providing additional time at
the end of an entire, continuous dynamic visualization would enhance learning because this
would do nothing to alleviate the high load at certain points in time. Support for the claim
that the segmentation effect is not simply due to differences in learning time is provided by
the study of Hasler et al. (2007), in which learning time was equal for all conditions but
segmentation still affected learning outcomes.

Next to the assumption that giving students extra time for necessary cognitive processes
may have positive effects on learning, segmentation may also support learning by
highlighting the structure underlying the process or procedure shown in dynamic
visualizations.

Enhancing Perception of the Underlying Structure

In many dynamic visualizations multiple subevents or substeps in a process or procedure
are shown across time (Meyer et al. 2010; Schnotz & Lowe 2008). For example, in the case
of a four-stroke engine, one can divide its functioning in several substeps such as intake
stroke, compression stroke, etc. (Meyer et al. 2010). People also tend to perceive events or
procedures shown in dynamic visualizations as consisting of a series of discrete subevents
or substeps (e.g., Kurby & Zacks 2008; Zacks et al. 2007). This implies that they mentally
segment the continuous stream of information presented. The event segmentation theory
(Zacks et al. 2007) describes the processes underlying mental segmentation. It is assumed
that people form event models in working memory on the basis of incoming sensory
information and prior knowledge. Based on these models, they form predictions about what
will happen in the next moment and compare these predictions with what actually happens
according to the new incoming sensory information. When the predictions and the new
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incoming sensory information differ too much, a new event model for the next segment
needs to be constructed. At this point, a so-called event boundary is distinguished (Zacks
et al. 2007). Physical changes in the information shown, such as changes in movements,
speed, or distance between objects as well as structural changes, such as subgoal
completion and initiation, lead to a decrease in predictability of the new incoming sensory
information and therefore to the distinction of event boundaries (Kurby & Zacks 2008;
Zacks 2004; Zacks et al. 2007).

For example, if a general physician in a video about putting on walking plaster starts
winding a layer of cotton around the patient's leg, one can predict that he or she will
continue with that action until the patient's leg is wrapped up in a layer of cotton (Robroek
& Van de Beek 2005). If the patient's leg is wrapped up in a layer of cotton, the coherent
movement pattern of the general physician changes and another subgoal will be initiated,
with the consequence that it is more difficult to predict the new incoming sensory
information and an event boundary is distinguished (Zacks et al. 2007). Because the
occurrence of discontinuities in the incoming sensory information and the completion and
the initiation of subgoals are related to each other (although for some subevents, more
tightly than for others), mental segmentation on the basis of discontinuities in the incoming
sensory information supports interpretation and therefore comprehension of the information
shown in terms of subgoals (Baldwin et al. 2001; Hard et al. 2006; Zacks 2004). At event
boundaries, the representations in working memory are updated. Because more extensive
processing of information takes place at event boundaries than between event boundaries,
more information about those boundaries is stored in long-term memory than about the
parts between the boundaries (Zacks et al. 2007). Finally, segmentation aids in chunking
information, which reduces the cognitive load imposed by maintaining the information
(Kurby & Zacks 2008; Schnotz & Lowe 2008).

Since mental segmentation is in this way related to interpretation and storage in long-
term memory, it can be expected that individual differences in mental segmentation lead to
differences in learning outcomes (cf. Koopman & Newtson 1981). Differences in
segmentation rates have been found between participants who were asked to segment
videos about several human activities (e.g., a couple playing a party game, a person doing
dishes, assembling a saxophone, and fertilizing house plants); that is, there were differences
in the size of the substeps or subevents in which participants divided the videos (Hanson &
Hirst 1989; Zacks et al., 2006; Zacks et al., 2001). Those differences have been shown to
influence the recall of details of videos and memory for the temporal order of subevents or
substeps shown. Participants who divided videos about a couple playing a game, a person
cleaning a pistol, or a person upgrading a computer in smaller subevents recalled more
subevents on a free recall test (Hanson & Hirst 1989; Schwan et al. 2000). Zacks et al.
(2006) did not examine free recall but assessed performance on a test requiring participants
to sort pictures taken from videos of planting flowers in a window box, setting up a tent,
washing clothes, and washing a car in the correct order. Their second experiment showed
that requiring participants to segment in smaller subevents was associated with worse
performance on the test than requiring them to segment in larger subevents. They suggest
that segmentation in smaller subevents might have led to a focus on temporal relations
between small subevents, which may have negative effects on memory of the more global
temporal relations. Zalla et al. (2003) found that individuals with frontal lobe damage had
difficulties with segmenting videos, depicting a person performing actions in an office or a
couple playing a party game, in larger subevents. Although they recalled the same number
of events from the videos as controls without brain lesions on a free recall test, they tended
to recall the subevents without links between them and in a wrong temporal order. Like the
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second experiment by Zacks et al. (2006), this study suggests that segmentation in smaller
subevents may be associated with difficulties in remembering the temporal order of
subevents. Although the dynamic visualizations used in these studies depicted everyday life
activities, they might have some relevance for education; consider for example dynamic
visualizations on learning to perform first aid procedures (Arguel & Jamet 2009). In
addition, Zacks et al. (2006; experiment 2) had some participants perform the test without
having seen the videos, and their scores suggest that the temporal order was not completely
arbitrary or commonsense. The order of segments of a process or procedure is relevant in
many instructional dynamic visualizations as well. For example, in the study by Moreno
and Valdez (2005), the learning task consisted of putting segments of an animation about
lightning formation in the correct temporal and causal order.

Concerning instructional dynamic visualizations, these findings might imply that
differences in learning outcomes may occur between students, depending on how they
mentally segmented the dynamic visualization (cf. Koopman & Newtson 1981). Further
evidence for an effect of mental segmentation differences on learning is provided by studies
about design measures that likely disturbed participants' perception of the structure
underlying the information shown (Kurby & Zacks 2008; Zacks et al. 2007). Schwan and
Garsoffky (2004) showed participant videos about cleaning a pistol or upgrading a
computer, either unaltered, with event boundaries replaced by a 1-s black screen or with
parts between event boundaries replaced by a 1-s black screen. The event boundaries had
been determined by studying which locations experts indicated as such (see also Schwan
et al. 2000). It was hypothesized that deleting event boundaries disrupts the event structure
people use for their mental segmentation. Indeed, participants viewing a video from which
event boundaries were deleted indicated the ends of segments about equally often at event
boundaries as at points between event boundaries, whereas participants viewing other
versions of the video indicated ends of segments about twice as often at event boundaries
than at points between event boundaries. Moreover, participants who viewed the video from
which event boundaries had been deleted recalled a lower proportion of the subevents than
the participants from the other groups, which might be due to disruption of the event
structure, reduced coherence of the video, and a lower proportion of relevant steps shown.
Between the unaltered version of the video and the version with replacements between
event boundaries, only small differences were found in the proportion of recalled subevents,
but different subevents were recalled. Schwan and Garsoffky (2004) proposed that these
differences are due to changes in the temporal density of subevents that are the consequence
of the deletion of parts. Since deletions and insertions of black screens always co-occurred,
it is not clear whether the insertion of black screens alone would affect learning.

Boltz (1992) showed participants an episode of a mini-series without commercials or
with commercials inserted either at event boundaries or between event boundaries. The
locations of event boundaries had also been determined based on a previous study. She
hypothesized that insertion of commercials between event boundaries would hinder
perceiving the underlying event structure of the episode. Her results were in line with
this hypothesis: Participants who saw this version recalled less from the episode than
participants who saw another version. In addition, a positive effect on recall was found of
inserting twice as many commercials at event boundaries and a negative effect of inserting
twice as many commercials between event boundaries.

If design measures can hinder participants to perceive the underlying structure of a
depicted event, process, or procedure, it is likely that they can be applied to aid perceiving
that structure as well. When design measures make event boundaries more salient, they
have a temporal cueing effect (Boltz 1992; Schwan et al. 2000; Zacks et al. 2007).
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Temporal cueing involves highlighting points in time rather than visuospatial parts. A
number of studies provide evidence that temporal cueing of event boundaries enhances
remembering of information shown. Schwan et al. (2000) highlighted either event
boundaries or points between event boundaries through cuts in videos about cleaning a
pistol or upgrading a computer. It was found that cueing event boundaries prevented the
occurrence of a negative relation between segmentation in smaller subevents and
completeness (although not detailedness) of recall. Additionally, it was found that time
periods around event boundaries that were cued by a cut were recalled better than around
event boundaries that were not cued. Arguel and Jamet (2009, experiment 1) compared
three versions of learning materials on first aid: dynamic visualizations combined with key
frames (i.e., static pictures from different substeps), dynamic visualizations without key
frames, and key frames without dynamic visualizations. The addition of the key frames to
the dynamic visualization may have served as a cue of the underlying structure of the
shown procedures, and this condition had better posttest performance than the other
conditions. In experiment 1, all key frames were revealed at once, right at the beginning
of the dynamic visualizations. In their second experiment, Arguel and Jamet (2009)
showed that revealing the key frames sequentially (after which they remained visible) led
to better posttest performance than presenting them at once at the beginning of the
dynamic visualization. When twice as many frames as in experiment 1 were presented,
this had a negative effect on posttest performance. This negative effect tended to
disappear if the frames were presented sequentially. In addition to cueing the underlying
event structure, presentation of key frames may aid in maintaining and chunking the
shown information as well. Well-chosen key frames provide external representations of
previous substeps, so that students do not have to use a proportion of the available time to
refresh memory traces to be able to mentally integrate them with information presented
later (Bétrancourt et al. 2008). They also provide students with a compact presentation of
the substeps so that students are aided in chunking the information (Schnotz & Lowe
2008). In other words, they lead to a reduction in cognitive activities imposing extraneous
cognitive load (Arguel & Jamet 2009; Schnotz & Lowe 2008) and an increase in
cognitive activities associated with learning.

Segmentation of instructional dynamic visualizations is another design measure that may
cue event boundaries. That is, rather than relying on students' ability to mentally segment
the dynamic visualisations, this is done for them. Segmentation might enhance learning by
aiding students in perceiving the underlying structure of the process or procedure and by
aiding chunking. This function of segmentation is suggested by the work of Catrambone on
learning to solve probability calculation problems from worked examples (1995, 1996, and
1998). For example, Catrambone (1995) compared four groups, which differed on whether
or not a label for a particular calculation substep was provided (i.e., providing meaning to
the step) and on whether or not that calculation substep was placed on a separate line (i.e.,
cue of what constituted a step). Learning outcomes were higher, and students mentioned a
substep more often in their description of the calculation procedure if a label was provided,
the step was visually isolated or both the label was provided and the step was isolated,
compared with a control condition in which no cues were provided. Segmentation of
dynamic visualizations might have a similar effect. That is, by temporally cueing event
boundaries, segmentation indicates which substeps or subevents belong together and which
steps need to be separated. This may also encourage students to self-explain why particular
substeps or subevents belong together or need to be separated, which might lead to deeper
understanding of the process or procedure (Catrambone 1995, 1996, 1998; see also Wouters
et al. 2008).
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Students with higher levels of prior knowledge might not need these temporal cues or
might even be hampered by them. The findings of Boucheix and Guignard (2005) and
Spanjers et al. (2010) show that students with higher levels of prior knowledge do not need
additional guidance through segmentation. For students with higher levels of prior
knowledge, the amount of cognitive resources they can devote to cognitive activities with
a positive effect on learning is reduced when they have to reconcile the instructional
guidance with the guidance given by their available cognitive schemas (Kalyuga 2007).

Discussion

This article proposed that two processes may underlie the effectiveness of segmentation of
dynamic visualizations. First of all, in the studies on segmentation that were conducted thus
far, segmentation was always associated with pauses between segments. These pauses may
have caused the beneficial effects on cognitive load and learning because they give students
time to perform the cognitive activities needed for learning on a smaller unit of information,
without having to simultaneously attend to the next unit of information (e.g., Mayer &
Moreno 2003: Moreno & Mayer 2007). This first explanation is mainly based on cognitive
load theory (Sweller et al. 1998), although we also introduced a perspective on cognitive
load based on the work by Barrouillet and Camos (2007) that is new to cognitive load
theory. Second, segmentation may be effective because it cues students to perceive event
boundaries, thereby aiding them in perceiving the structure underlying the process or
procedure shown (cf. Catrambone 1995, 1996, 1998; see also Wouters et al. 2008). This
second explanation is mainly based on event segmentation theory (Zacks et al. 2007). The
two explanations are thus based on two different theories about processes involved in
learning from dynamic visualisations. As mentioned before, the explanations are not
mutually exclusive, and there are also some connections between the theories. For example,
mental segmentation, which is the process on which the event segmentation theory focuses,
influences the representations held in working memory (e.g., Zacks et al. 2007) that
influence cognitive load.

Which of the two mechanisms, that is, pauses or temporal cueing, plays the most
important role in explaining the positive effects of segmentation on learning or whether
their combination is crucial cannot be judged based on previous studies in which a pause
also automatically cued the end of a segment. Therefore, this remains an important
empirical question for future studies in which different versions of instructional dynamic
visualizations with segmentation through pauses, cues, or both could be compared.

Next to this central question, there are some other interesting directions for future
research on the effects of segmentation of dynamic visualizations on cognitive load and
learning. The first is whether effects of segmentation (or more specifically, of pauses and
temporal cueing) would differ between different types of dynamic visualizations. Studies
based on the event segmentation theory often used dynamic visualizations depicting
everyday life activities, and naturally, all participants have experience with observing such
activities (Hard et al. 2006; Zacks et al. 2007). Moreover, in some studies, some or even all
of the depicted events were familiar to the participants (Hanson & Hirst 1989; Zacks et al.
2006; Zacks et al. 2001). Consequently, participants would already have relevant cognitive
schemas for those events that would influence the construction of event models (Zacks et
al. 2007); one might hypothesize that, perhaps, less cognitive load is required for the
construction of event models in such visualizations of everyday tasks than in visualizations
on, for example, natural or biological processes or on the spatial arrangement of complex
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chemical molecules and other structures. Furthermore, depictions of familiar human
movements seem to automatically trigger activation of the mirror neuron system with the
consequence that an effortless process of embodied simulation occurs (Van Gog et al.
2009), and mirror neurons have been suggested to be involved in the process of mental
segmentation as well (Sommerville & Decety 2006). Therefore, differences in ease of
mental segmentation and in the amount of cognitive load imposed by mental segmentation
may exist between dynamic visualizations depicting human movement activities and those
depicting other kinds of processes, procedures, or structures, and although segmenting
dynamic visualizations might be effective for both types of visualizations, it might be most
crucial for non-human movement activities if these indeed impose higher load. Whether the
cognitive load imposed by constructing event models is lower in human movement tasks
than in non-human movement tasks could be investigated with online physiological
measures of cognitive load, such as pupil dilation (Kahneman & Beatty 1966; Van Gerven
et al. 2004) or EEG (Antonenko et al. 2010). For example, Swallow and Zacks (2004)
found transient small increases in participants' pupil dilation after event boundaries in
dynamic visualisations.

A second direction for future research concerns the role of learner characteristics, such
as prior knowledge that may interact with the effects of segmentation. In this article, we
described two studies (Boucheix & Guignard 2005; Spanjers et al., 2010) that found an
expertise reversal effect of segmentation on cognitive load and/or learning. However,
before concluding that segmentation per se is not helpful for students with higher levels of
prior knowledge, we might need to investigate the effects of different grain sizes of
segments. There are no clear guidelines on how to determine the length of a segment;
some researchers base the length on theories with regard to cognitive functioning (Hasler
et al. 2007; Mayer & Chandler 2001; Moreno 2007), while others consult experts in order
to determine what meaningful pieces are in which to divide the dynamic visualizations
(Arguel & Jamet 2009; Schwan & Garsoffky 2004; Schwan et al. 2000; Spanjers et al.,
2010). The study by Boltz (1992) suggested that segment length may influence learning:
She found a positive effect on recall of dividing dynamic visualizations in shorter
segments by inserting twice as many commercials at event boundaries. The question is,
however, whether the effects on cognitive load and learning of different segment lengths
would be the same for low and high prior knowledge learners. It might be that novices
need smaller segments because all information is new to them, whereas learners with
more prior knowledge might benefit from larger segments. In addition, it might be
interesting to investigate whether students with different levels of prior knowledge would
benefit from actively segmenting dynamic visualizations themselves. Interactivity with
dynamic visualizations has been proposed as a way to encourage students to engage in
activities contributing to learning (Wouters et al. 2007). If students must segment
dynamic visualisations themselves, they are encouraged to focus on which subevents or
substeps are depicted, which may have a positive effect on learning. However, this
positive effect is probably found only when cognitive resources are available for attending
to this additional task while learning the content of the visualization (i.e., if students
devote all their attention to determining segments, they might learn very little). Therefore,
actively segmenting dynamic visualisations may only be beneficial for students with
higher levels of prior knowledge. This kind of research on the effects of having learners
segment animations themselves could perhaps also shed light on the required grain size of
segments for different types of learners by providing indications on whether students with
lower and higher prior knowledge would distinguish smaller or larger segments. The
empirical findings from previous studies on mental segmentation with regard to this
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question are mixed. Participants in the study of Hard et al. (2006) who had seen the dynamic
visualizations a number of times before they had to segment them, divided them in larger
units than participants who had not seen the dynamic visualizations before. However, other
studies found no effect of expertise, training, or familiarity with the content on the length of
segments made by participants (Schwan et al. 1998; Zacks et al. 2001). Finally, next to prior
knowledge, there may be other learner characteristics that influence the effects of
segmentation on learning, such as motivation, spatial ability, or age.

In conclusion, two processes may underlie the effectiveness of segmented dynamic
visualizations: pausing and temporal cueing. Future empirical studies should further
examine these cognitive processes and associated cognitive load as well as factors
influencing these processes.
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