10 research outputs found

    Intestinal function is impaired in patients with Chronic Obstructive Pulmonary Disease

    No full text
    Background & aims: Gastrointestinal symptoms are prevalent extrapulmonary systemic manifestations of Chronic Obstructive Pulmonary Disease (COPD), but have been rarely studied. We dissected the perturbations in intestinal function in human patients with COPD using comprehensive metabolic and physiological approaches. Methods: In this observational study, small intestinal membrane integrity and active carrier-mediated glucose transport were quantified by sugar permeability test in 21 clinically stable patients with moderate to severe COPD (mean FEV1, 41.2 (3.2) % of predicted) and 16 healthy control subjects. Protein digestion and absorption was analyzed using stable tracer kinetic methods. Plasma acetate, propionate, and butyrate concentrations were measured as markers of intestinal microbial metabolism. Results: Compared with healthy controls, non carrier-mediated permeability was higher (0.062 (95% CI [0.046, 0.078]) vs. 0.037 (95% CI [0.029, 0.045]), P = 0.009) and active glucose transport lower in COPD (31.4 (95% CI [23.4, 39.4])% vs. 48.0 (95% CI [37.8, 58.3])%, P = 0.010). Protein digestion and absorption was lower in COPD (0.647 (95% CI [0.588, 0.705]) vs. 0.823 (95% CI [0.737, 0.909]), P = 0007), and impairment greater in patients with dyspnea (P = 0.038), exacerbations in preceding year (P = 0.052), and reduced transcutaneous oxygen saturation (P = 0.051), and was associated with reduced physical activity score (P = 0.016) and lower quality of life (P = 0.0007). Plasma acetate concentration was reduced in COPD (41.54 (95% CI [35.17, 47.91]) vs. 80.44 (95% CI [54.59, 106.30]) mmol/L, P = 0.001) suggesting perturbed intestinal microbial metabolism. Conclusions: We conclude that intestinal dysfunction is present in COPD, worsens with increasing disease severity, and is associated with reduced quality of life. (c) 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved

    Abdominal obesity in COPD is associated with specific metabolic and functional phenotypes

    No full text
    Abstract Background Abdominal obesity (AO) is linked to reduced health status and mortality. While it is known that AO is prevalent in chronic obstructive pulmonary disease (AO-COPD), the specific metabolic and functional consequences associated with AO-COPD remain understudied. Methods We studied 199 older adults with COPD and 168 control subjects with and without AO and assessed visceral adipose tissue (VAT) by dual-energy X-ray absorptiometry. VAT > 70th percentile of the control group qualified a subject as AO in a sex specific manner. We measured plasma concentrations and whole body production (WBP) rates of multiple amino acids to assess the metabolic profile. We assessed medical history, body composition by Dual-Energy X-ray Absorptiometry, muscle strength, and cognitive function. We performed statistics by analysis of covariance (p) and FDR (q) for multiple comparisons. Results AO-COPD subjects had 27% more VAT (q < 0.01) than AO-Control subjects despite correction for BMI. Branched-chain amino acid concentrations and WBP rates were generally elevated in AO-COPD but whole body clearance rate was only elevated in COPD. Metabolic syndrome comorbidities (p < 0.01) and systemic inflammation (P < 0.05) were most prevalent in the AO-COPD group. Muscle strength was reduced in COPD subjects (p < 0.001), but partially preserved when combined with AO. Cognitive dysfunction and mood disturbances were present in COPD subjects (p < 0.001) with worst performers in AO-COPD (q < 0.05). Conclusion The presence of AO is associated with specific metabolic and functional phenotypes in COPD. Clinical trial registry Trial registration ClinicalTrials.gov. In the present paper, we report an analysis of the baseline measurements of COPD subjects and healthy controls from the study numbers: NCT01787682, NCT01787682, NCT02157844, NCT02082418, NCT02065141, NCT02770092, NCT02908425, NCT03159390, NCT02780219, NCT03327181, NCT03796455, NCT04928872, NCT04461236, NCT01173354, NCT01154400

    Perceptions and Practices of the Iranian Population regarding Skin Cancers: A Literature Review

    No full text
    Despite being preventable, more than 15% of all cancer cases in Iran occur in the skin, making them the most commonly diagnosed malignancy in the country. The purpose of this study is to gain an insight into the current skin cancer related knowledge, attitudes, beliefs, and practices among the Iranian population. A systematic computer based literature search was conducted using databases for articles published through April 2017. Research studies included those that measured skin cancer or sun protection related knowledge, attitudes, beliefs, and behaviors in different Iranian population groups. Exclusion criteria for the articles included (1) irrelevant topics to the review article’s aim, (2) articles that focused on the treatment of skin cancers instead of prevention practices, and (3) similar studies conducted on populations not indigenous to Iran. A total of 25 articles that met the eligibility criteria were included in the review. Predominant data were collected via questionnaires. Skin cancer related knowledge varied from low to high across the studies. Moreover, there was a pattern of low perceived skin cancer susceptibility and severity. Overall, there was low usage of sun protection methods among the Iranian population. The findings of this study show that efforts to prevent skin cancer are needed. Education concerning the dangers of sun exposure as well as strategies used to prevent or lower the risk of developing skin cancer should be stressed

    Functional and metabolic effects of omega-3 polyunsaturated fatty acid supplementation and the role of β-hydroxy-β-methylbutyrate addition in Chronic Obstructive Pulmonary Disease: a randomized clinical trial

    No full text
    Introduction: short-term (4 weeks) supplementation with n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has recently been shown to improve protein metabolism in a dose dependent way in normal weight patients with Chronic Obstructive Pulmonary Disease (COPD). Furthermore, EPA/DHA supplementation was able to increase extremity lean soft tissue but not muscle function. No studies are available combining n-3 PUFAs and the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) supplementation in chronic clinical conditions. Whether adding HMB to daily EPA/DHA supplementation for 10 weeks enhances muscle and brain health, daily functional performance, and quality of life of patients with COPD by further improving their protein and amino acid homeostasis remains unknown.Methods: patients with COPD (GOLD: II-IV, n = 46) received daily for 10 weeks, according to a randomized double-blind placebo-controlled three-group design, EPA/DHA (n = 16), EPA/DHA to which HMB was added (n = 14), or placebo (n = 16). The daily dose of 2.0 g of EPA/DHA or soy + corn oil as the placebo was provided via gel capsules, and 3.0 g of Ca-HMB or maltodextrin as placebo as powders. At pre- and post-intervention, a pulse mixture of multiple amino acids was administered to measure postabsorptive net protein breakdown (netPB as primary endpoint) and whole body production (WBP) and conversion rates of the amino acids. As secondary endpoints, lean soft tissue and fat mass were assessed by dual-energy X-ray absorptiometry, upper and lower muscle function by handgrip and single leg isokinetic dynamometry, brain (cognitive, wellbeing) health by assessments, daily functional performance by measuring 6-min walk distance, 4-m gait speed, and postural balance, and quality of life by questionnaire. Plasma enrichments and concentrations were analyzed by LC-MS/MS, and systemic inflammatory profile and metabolic hormones by Luminex.Results: HMB + EPA/DHA but not EPA/DHA supplementation increased postabsorptive netPB (p = 0.028), and WBPs of glutamine (p = 0.024), taurine (p = 0.039), and tyrosine (p = 0.036). Both EPA/DHA and HMB + EPA/DHA supplementation resulted in increased WBP of phenylalanine (p &lt; 0.05). EPA/DHA but not HMB + EPA/DHA was able to increase WBP of arginine (p = 0.030), citrulline (p = 0.008), valine (p = 0.038), and conversion of citrulline to arginine (p = 0.009). Whole body and extremity fat mass were reduced after HMB + EPA/DHA supplementation only, whereas lean soft tissue was increased after EPA/DHA (p = 0.049) and HMB + EPA/DHA (p = 0.073). No other significant findings were observed. Reductions in several proinflammatory cytokines were observed in the HMB + EPA/DHA group including IL-2, IL-17, IL-6, IL-12P40, and TNF-β (p &lt; 0.05).Conclusions: ten weeks of supplementation with 2 g of EPA/DHA daily is sufficient to induce muscle gain in COPD but HMB is needed to induce fat loss. Whether HMB is solely responsible for the fat mass loss or has a synergistic effect with EPA/DHA remains unclear. The increase in net protein breakdown observed with HMB + EPA/DHA supplementation may indicate a beneficial enhanced protein turnover cycling associated with increased lean soft tissue
    corecore