2,090 research outputs found

    Predicting all-cause mortality from basic physiology in the Framingham Heart Study

    Get PDF
    Using longitudinal data from a cohort of 1349 participants in the Framingham Heart Study, we show that as early as 28–38 years of age, almost 10% of variation in future lifespan can be predicted from simple clinical parameters. Specifically, we found diastolic and systolic blood pressure, blood glucose, weight, and body mass index (BMI) to be relevant to lifespan. These and similar parameters have been well‐characterized as risk factors in the relatively narrow context of cardiovascular disease and mortality in middle to old age. In contrast, we demonstrate here that such measures can be used to predict all‐cause mortality from mid‐adulthood onward. Further, we find that different clinical measurements are predictive of lifespan in different age regimes. Specifically, blood pressure and BMI are predictive of all‐cause mortality from ages 35 to 60, while blood glucose is predictive from ages 57 to 73. Moreover, we find that several of these parameters are best considered as measures of a rate of ‘damage accrual’, such that total historical exposure, rather than current measurement values, is the most relevant risk factor (as with pack‐years of cigarette smoking). In short, we show that simple physiological measurements have broader lifespan‐predictive value than indicated by previous work and that incorporating information from multiple time points can significantly increase that predictive capacity. In general, our results apply equally to both men and women, although some differences exist

    Plasma microRNA levels following resection of metastatic melanoma

    Get PDF
    Melanoma remains the leading cause of skin cancer–related deaths. Surgical resection and adjuvant therapies can result in disease-free intervals for stage III and stage IV disease; however, recurrence is common. Understanding microRNA (miR) dynamics following surgical resection of melanomas is critical to accurately interpret miR changes suggestive of melanoma recurrence. Plasma of 6 patients with stage III (n = 2) and stage IV (n = 4) melanoma was evaluated using the NanoString platform to determine pre- and postsurgical miR expression profiles, enabling analysis of more than 800 miRs simultaneously in 12 samples. Principal component analysis detected underlying patterns of miR expression between pre- vs postsurgical patients. Group A contained 3 of 4 patients with stage IV disease (pre- and postsurgical samples) and 2 patients with stage III disease (postsurgical samples only). The corresponding preoperative samples to both individuals with stage III disease were contained in group B along with 1 individual with stage IV disease (pre- and postsurgical samples). Group A was distinguished from group B by statistically significant analysis of variance changes in miR expression ( P < .0001). This analysis revealed that group A vs group B had downregulation of let-7b-5p, miR-520f, miR-720, miR-4454, miR-21-5p, miR-22-3p, miR-151a-3p, miR-378e, and miR-1283 and upregulation of miR-126-3p, miR-223-3p, miR-451a, let-7a-5p, let-7g-5p, miR-15b-5p, miR-16-5p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-26a-5p, miR-106a-5p, miR-17-5p, miR-130a-3p, miR-142-3p, miR-150-5p, miR-191-5p, miR-199a-3p, miR-199b-3p, and miR-1976. Changes in miR expression were not readily evident in individuals with distant metastatic disease (stage IV) as these individuals may have prolonged inflammatory responses. Thus, inflammatory-driven miRs coinciding with tumor-derived miRs can blunt anticipated changes in expression profiles following surgical resection

    Cell cycle and developmental control of cortical excitability in Xenopus laevis

    Get PDF
    Interest in cortical excitability—the ability of the cell cortex to generate traveling waves of protein activity—has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in Xenopus laevis eggs and embryos and the changes in cortical excitability throughout early development. We found that cortical excitability begins to manifest shortly after egg activation. Further, we identified a close relationship between wave properties—such as wave frequency and amplitude—and cell cycle progression as well as cell size. Finally, we identified quantitative differences between cortical excitability in the cleavage furrow relative to nonfurrow cortical excitability and showed that these wave regimes are mutually exclusive

    Mapping spatial dimensions of Wilderness recreation outcomes: a study of overnight users

    Get PDF
    Grand Teton National Park (GRTE) is a popular mountain recreation destination which, like many National Park Service (NPS) units, has experienced a significant increase in visitation in recent years, with total visits increasing by 27% between 2014 and 2017 (NPS 2020). Particularly popular within GRTE is the String and Leigh Lakes (SLL) area, which is a favoured alpine destination for numerous day-use recreation activities and also an important starting point for backcountry and overnight recreational users within GRTE’s Recommended Wilderness. To better understand the visitor experience of overnight backcountry recreationists in the SLL area, data were collected using novel public participatory geographic information systems (PPGIS) during the summer of 2018. PPGIS data were used to identify the locations in which overnight recreationists experienced positive and negative recreation outcomes. Results indicate that they experience more positive outcomes within the Recommended Wilderness, away from high-density, trailhead-proximate areas outside the Recommended Wilderness. Findings also indicate that overnight users experience crowding and conflict more outside of the Recommended Wilderness than elsewhere on their backcountry trip. While this may seem intuitive, these are some of the first empirical results spatially contextualizing backcountry visitor outcomes in a popular national park. The findings thus provide managers with a visitor experience baseline that can be monitored and adaptively managed in the future

    Results from 2011 Baseline Vegetation Monitoring in 20 Constructed Bioswales along Interstate 294 from Touhy Avenue to Lake-Cook Road in Cook County, IL

    Get PDF
    This report documents the baseline vegetation parameters relevant to the performance standards in bioswales. The principle objectives are to describe details of the overall patterns of species composition, diversity (based on species richness and species density), and percent cover in the bioswales. In addition, floristic integrity based on Floristic Quality Assessment metrics also will be described.Illinois State Toll Highway Authorityunpublishednot peer reviewedOpe

    THE EFFECTS OF MUSCLE CROSS-SECTIONAL AREA ON THE PHYSICAL WORKING CAPACITY AT THE FATIGUE THRESHOLD

    Get PDF
    Purpose: The purpose of this study was to examine the effects of quadriceps cross-sectional area (CSA) of the dominant quadriceps muscle in the assessment of the physical working capacity at the fatigue threshold (PWCFT) during incremental cycle ergometry. Methods: Eighteen adults (9 men and 9 women; mean age ± SD = 20.5 ± 1.04 yr; mean body weight ± SD = 73.9 ± 18.2 kg; mean height ± SD = 172.3 ± 11.5 cm; mean dominant quadriceps CSA ± SD = 68.7 ± 14.5 cm2) performed an incremental cycle ergometry test to exhaustion while the electromyographic (EMG) signals were recorded from the vastus lateralis (VL) muscles. Fatiguing and non-fatiguing power outputs were differentiated by examining the slope coefficients for the EMG amplitude versus time relationship at each power output throughout the incremental cycle ergometry test. Quadriceps CSA was estimated from an equation. Subjects were divided into groups of small quadriceps CSA (57.3 ± 10.0 cm2) and large quadriceps CSA (80.0 ± 7.6 cm2). Results: Independent t-test results indicated no significant mean differences between the PWCFT for the large and small quadriceps CSA groups (p=0.456). Conclusion: The findings of the study suggest that muscle CSA may not have a significant effect on the assessment of the PWCFT, and therefore that PWCFT may be a determinant of neuromuscular fatigue independent of muscle CSA. Future research could explore the contributions of muscle fibertype predominance to CSA and PWCFT and provide more conclusive evidence relating these variables
    • 

    corecore