3,728 research outputs found
Recommended from our members
Mouse Ooplasm Confers Context-Specific Reprogramming Capacity
Enucleated oocytes have the remarkable ability to reprogram somatic nuclei back to totipotency. Here we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer such as germ-line associated promoters, as well as unique limitations that include certain repetitive element classes.Stem Cell and Regenerative Biolog
Mouse ooplasm confers context-specific reprogramming capacity
Enucleated oocytes have the distinctive ability to reprogram somatic nuclei back to totipotency. Here, we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer, such as germline-associated promoters, as well as unique limitations that include certain repetitive element classes.National Institutes of Health (U.S.) (Grant 5DP1OD003958
Molecular recording of mammalian embryogenesis.
Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes
A unique regulatory phase of DNA methylation in the early mammalian embryo
DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)—including many CpG island promoters—that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.Burroughs Wellcome (Career Award)National Institutes of Health (U.S.) (5RC1AA019317)National Institutes of Health (U.S.) (U01ES017155)National Institutes of Health (U.S.) (P01GM099117)National Human Genome Research Institute (U.S.) (1P50HG006193-01
Recommended from our members
A unique regulatory phase of DNA methylation in the early mammalian embryo
Summary DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methyl cytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and to date no base-resolution maps exist to support and refine it. Here, we generated genome-scale DNA methylation maps in mouse gametes and through post-implantation embryogenesis. We find that the oocyte already exhibits global hypomethylation, most prominently at specific families of long interspersed element-1 and long terminal repeat retro-elements, which are disparate between gametes and resolve to lower methylation values in zygote. Surprisingly, the oocyte contributes a unique set of Differentially Methylated Regions (DMRs), including many CpG Island promoter regions, that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and resolve to hypermethylation after the blastocyst stage. Our data provide a complete genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.Stem Cell and Regenerative Biolog
A World-Volume Perspective on the Recombination of Intersecting Branes
We study brane recombination for supersymmetric configurations of
intersecting branes in terms of the world-volume field theory. This field
theory contains an impurity, corresponding to the degrees of freedom localized
at the intersection. The Higgs branch, on which the impurity fields condense,
consists of vacua for which the intersection is deformed into a smooth
calibrated manifold. We show this explicitly using a superspace formalism for
which the calibration equations arise naturally from F- and D-flatness.Comment: References adde
Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.
STUDY DESIGN: This study was a retrospective, multicenter cohort study.
OBJECTIVES: Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience.
METHODS: This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC.
RESULTS: Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects.
CONCLUSIONS: PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects
- …
