585 research outputs found

    Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks

    Get PDF
    The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function τ out of the two-dimensional directed sandpile universality class τ = 4/3, into the mean field universality class τ = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network

    Beam-Target Helicity Asymmetry E in K⁺Σ⁻ Photoproduction On The Neutron

    Get PDF
    We report a measurement of a beam-target double-polarisation observable (E) for the → n→(p) → K+Σ-(p) reaction. The data were obtained impinging the circularly-polarised energy-tagged photon beam of Hall B at Jefferson Lab on a longitudinally-polarised frozen-spin hydrogen deuteride (HD) nuclear target. The E observable for an effective neutron target was determined for centre-of-mass energies 1.70 ≤ W ≤ 2.30 GeV, with reaction products detected over a wide angular acceptance by the CLAS spectrometer. These new double-polarisation data give unique constraints on the strange decays of excited neutron states. Inclusion of the new data within the Bonn-Gatchina theoretical model results in significant changes for the extracted photocouplings of a number of established nucleon resonances. Possible improvements in the PWA description of the experimental data with additional missing resonance states, including the N(2120)3/2- resonance, are also quantified

    Cost Optimization of Ice Distribution

    Get PDF
    Two questions regarding minimizing fuel costs while delivering ice along a pre-set route are tackled. The first question is when demand exceeds the load of a single truck, so that a second truck of ice has to be taken to some point of the route for the driver/salesman to continue with that for the rest of the route: Is it better: 1) for the first truck to deliver starting from the costumer nearest to the base, or 2) for the first truck to start the delivery from the last costumer (the most distant from the base)? We show that the second strategy was better for the particular data looked at, and we have the basis of an algorithm for deciding which strategy is the better for a given delivery schedule. The second question concerns how best to modify a regular sales route when an extra delivery has to be made. Again, the basis for an algorithm to decide how to minimize fuel costs is derived

    Enlarged Perivascular Spaces are Negatively Associated with Montreal Cognitive Assessment Scores in Older Adults

    Get PDF
    Emerging evidence suggests that enlarged perivascular spaces (ePVS) may be a clinically significant neuroimaging marker of global cognitive function related to cerebral small vessel disease (cSVD). We tested this possibility by assessing the relationship between ePVS and both a standardized measure of global cognitive function, the Montreal Cognitive Assessment (MoCA), and an established marker of cSVD, white matter hyperintensity volume (WMH) volume. One hundred and eleven community-dwelling older adults (56–86) underwent neuroimaging and MoCA testing. Quantification of region-specific ePVS burden was performed using a previously validated visual rating method and WMH volumes were computed using the standard ADNI pipeline. Separate linear regression models were run with ePVS as a predictor of MoCA scores and whole brain WMH volume. Results indicated a negative association between MoCA scores and both total ePVS counts (P ≤ 0.001) and centrum semiovale ePVS counts (P ≤ 0.001), after controlling for other relevant cSVD variables. Further, WMH volumes were positively associated with total ePVS (P = 0.010), basal ganglia ePVS (P ≤ 0.001), and centrum semiovale ePVS (P = 0.027). Our results suggest that ePVS burden, particularly in the centrum semiovale, may be a clinically significant neuroimaging marker of global cognitive dysfunction related to cSVD

    Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height.

    Get PDF
    The biological processes controlling human growth are diverse, complex and poorly understood. Genetic factors are important and human height has been shown to be a highly polygenic trait to which common and rare genetic variation contributes. Weaver syndrome is a human overgrowth condition characterised by tall stature, dysmorphic facial features, learning disability and variable additional features. We performed exome sequencing in four individuals with Weaver syndrome, identifying a mutation in the histone methyltransferase, EZH2, in each case. Sequencing of EZH2 in additional individuals with overgrowth identified a further 15 mutations. The EZH2 mutation spectrum in Weaver syndrome shows considerable overlap with the inactivating somatic EZH2 mutations recently reported in myeloid malignancies. Our data establish EZH2 mutations as the cause of Weaver syndrome and provide further links between histone modifications and regulation of human growth

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst

    Get PDF
    This work was funded by Johnson Matthey plc. through the provision of industrial CASE studentships in partnership with the EPSRC (AZ (EP/N509176/1), APH (EP/P510506/1)). Experiments at the ISIS Neutron and Muon Source were made possible by beam time allocations from the Science and Technologies Facilities Council.45,46 Resources and support were provided by the UK Catalysis Hub via membership of the UK Catalysis Hub consortium and funded by EPSRC grants EP/R026815/1 and EP/R026939/1Peer reviewedPublisher PD

    First Measurement of Timeline Compton Scattering

    Get PDF
    We present the first measurement of the timelike Compton scattering process, p →p′∗(∗→e+e−), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 \u3c Q2 \u3c 9  GeV2, squared momentum transferred 0.1 \u3c −t \u3c 0.8  GeV2, and average total center-of-mass energy squared s = 14.5  GeV2 . The photon beam polarization asymmetry, similar to the beam-spin asymmetry in deep virtual Compton scattering, is sensitive to the imaginary part of the Compton form factors and provides a way to test the universality of the generalized parton distributions. The angular asymmetry of the decay leptons accesses the real part of the Compton form factors and thus the D-term in the parametrization of the generalized parton distributions
    corecore