60 research outputs found

    Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake

    Get PDF
    Since the work of Kanamori and Given (1981), it has been recognized that shallow, pure dip-slip earthquakes excite long-period surface waves such that it is difficult to independently constrain the moment (M_0) and the dip (ÎŽ) of the source mechanism, with only the product M_0 sin(2ÎŽ) being well constrained. Because of this, it is often assumed that the primary discrepancies between the moments of shallow, thrust earthquakes are due to this moment-dip tradeoff. In this work, we quantify how severe this moment-dip tradeoff is depending on the depth of the earthquake, the station distribution, the closeness of the mechanism to pure dip-slip, and the quality of the data. We find that both long-period Rayleigh and Love wave modes have moment-dip resolving power even for shallow events, especially when stations are close to certain azimuths with respect to mechanism strike and when source depth is well determined. We apply these results to USGS W phase inversions of the recent M9.0 Tohoku, Japan earthquake and estimate the likely uncertainties in dip and moment associated with the moment- dip tradeoff. After discussing some of the important sources of moment and dip error, we suggest two methods for potentially improving this uncertainty

    Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics

    Get PDF
    The relationship between M_0 and the rupture duration is often difficult to establish. This is particularly true for large earthquakes for which the moment rate functions (MRF) generally have complicated shapes, and the estimated durations can vary considerably depending on the methodology used to evaluate the MRF. In this work, we show that the centroid time-delay (τ_c) provides an alternative estimate of the source duration. Inverted MRFs often end gradually, making the end of coseismic rupture difficult to detect. In such cases, when the rupture duration is not well defined, the time-delay τ_c is a useful quantity to represent the first-order temporal characteristics of the rupture process. Variations in stress parameter Δσ can be investigated by assuming a standard scaling relationship between the seismic moment M0M0 and τ_c .This simple scaling relationship can also be used to identify unusual earthquakes, with unique source properties, such as events involving complicated rupture processes or earthquakes characterized by unusual rupture velocities, stress drops or aspect ratios

    Diverse rupture processes in the 2015 Peru deep earthquake doublet

    Get PDF
    International audienceEarthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes

    Uncertainty estimations for seismic source inversions

    Get PDF
    Source inversion is a widely used practice in seismology. Magnitudes, moment tensors, slip distributions are now routinely calculated and disseminated whenever an earthquake occurs. The accuracy of such models depends on many aspects like the event magnitude, the data coverage and the data quality (instrument response, isolation, timing, etc.). Here, like in any observational problem, the error estimation should be part of the solution. It is however very rare to find a source inversion algorithm which includes realistic error analyses, and the solutions are often given without any estimates of uncertainties. Our goal here is to stress the importance of such estimation and to explore different techniques aimed at achieving such analyses. In this perspective, we use the W phase source inversion algorithm recently developed to provide fast CMT estimations for large earthquakes. We focus in particular on the linear-inverse problem of estimating the moment tensor components at a given source location. We assume that the initial probability densities can be modelled by Gaussian distributions. Formally, we can separate two sources of error which generally contribute to the model parameter uncertainties. The first source of uncertainty is the error introduced by the more or less imperfect data. This is carried by the covariance matrix for the data (C_d). The second source of uncertainty, often overlooked, is associated with modelling error or mismodelling. This is represented by the covariance matrix on the theory, C_T. Among the different sources of mismodelling, we focus here on the modelling error associated with the mislocation of the centroid position. Both C_d and C_T describe probability densities in the data space and it is well known that it is in fact C_D = C_d + C_T that should be included into the error propagation process. In source inversion problems, like in many other fields of geophysics, the data covariance (C_D) is often considered as diagonal or even proportional to the identity matrix. In this work, we demonstrate the importance of using a more realistic form for C_D. If we incorporate accurate covariance components during the inversion process, it refines the posterior error estimates but also improves the solution itself. We discuss these issues using several synthetic tests and by applying the W phase source inversion algorithm to several large earthquakes such as the recent 2011 Tohoku-oki earthquake

    The December 7, 2012 Japan Trench intraplate doublet (M_w 7.2, 7.1) and interactions between near-trench intraplate thrust and normal faulting

    Get PDF
    A pair of large earthquakes ruptured within the Pacific plate below the Japan Trench about 14 s apart on December 7, 2012. The doublet began with an M_w 7.2 thrust event 50–70 km deep, followed by an M_w 7.1–7.2 normal-faulting event in the range 10–30 km deep about 27 km to the south–southwest. The deep lithosphere thrust earthquake is the largest such event to be recorded seaward of the rupture zone of the great March 11, 2011 Tohoku M_w 9.0 earthquake. It follows an extensive intraplate normal-faulting aftershock sequence since 2011 extending up to 100 km east of the trench. Many small normal faulting aftershocks of the doublet occurred along a 60 km-long trench-parallel-trend beneath the inner trench slope. The complex overlapping signals produced by the doublet present challenges for routine long-period moment tensor inversion procedures, but the inadequacy of any single point-source inversion was readily evident from comparisons of different data sets and solutions using different frequency bands. We use a two double-couple inversion of W-phase signals to quantify the doublet characteristics, along with an iterative deconvolution of P-wave signals that extracts a compatible three sub-event sequence. The occurrence of a large deep compressional event near the trench several years subsequent to a great megathrust event is similar to a sequence that occurred in the central Kuril Islands between 2006 and 2009, and appears to be associated with stress changes caused by the preceding interplate thrusting and intraplate normal faulting. Recent large deep compressional events in the Philippine Trench and northern Kermadec Trench regions may be influenced by strain accumulation on adjacent locked interplate megathrusts. Regions having more pronounced curvature of the subducting plate may have unrelaxed bending stresses, facilitating occurrence of large deep thrust faulting in advance of future megathrust failures, as was observed in 1963 in the central Kuril Islands region but not in the gently curving Pacific plate offshore of the great Tohoku event

    Extracting seismic core phases with array interferometry

    Get PDF
    Seismic body waves that sample Earth's core are indispensable for studying the most remote regions of the planet. Traditional core phase studies rely on well-defined earthquake signals, which are spatially and temporally limited. We show that, by stacking ambient-noise cross-correlations between USArray seismometers, body wave phases reflected off the outer core (ScS), and twice refracted through the inner core (PKIKP^2) can be clearly extracted. Temporal correlation between the amplitude of these core phases and global seismicity suggests that the signals originate from distant earthquakes and emerge due to array interferometry. Similar results from a seismic array in New Zealand demonstrate that our approach is applicable in other regions and with fewer station pairs. Extraction of core phases by interferometry can significantly improve the spatial sampling of the deep Earth because the technique can be applied anywhere broadband seismic arrays exist

    W phase source inversion for moderate to large earthquakes (1990–2010)

    Get PDF
    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. M_w ≄ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all M_w ≄ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in M_w rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the waveforms of the target event. To deal with such difficult situations, we remove the perturbation caused by earlier disturbing events by subtracting the corresponding synthetics from the data. The CMT parameters for the disturbed event can then be retrieved using the residual seismograms. We also explore the feasibility of obtaining source parameters of smaller earthquakes in the range 6.0 ≀_Mw < 6.5. Results suggest that the W phase inversion can be implemented reliably for the majority of earthquakes of Mw= 6 or larger

    The 2012 Sumatra great earthquake sequence

    Get PDF
    The equatorial Indian Ocean is a well known place of active intraplate deformation defying the conventional view of rigid plates separated by narrow boundaries where deformation is confined. On 11 April 2012, this region was hit in a couple of hours by two of the largest strike-slip earthquakes ever recorded (moment magnitudes Mw=8.6 and 8.2). Broadband seismological observations of the Mw=8.6 mainshock indicate a large centroid depth (∌30 km) and remarkable rupture complexity. Detailed study of the surface-wave directivity and moment rate functions clearly indicates the partition of the rupture into at least two distinct subevents. To account for these observations, we developed a procedure to invert for multiple-point-source parameters. The optimum source model at long period consists of two point sources separated by about 209 km with magnitudes Mw=8.5 and 8.3. To explain the remaining discrepancies between predicted and observed surface waves, we can refine this model by adding directivity along the WNW–ESE axis. However, we do not exclude more complicated models. To analyze the Mw=8.2 aftershock, we removed the perturbation due to large surface-wave arrivals of the Mw=8.6 mainshock by subtracting the corresponding synthetics computed for the two-subevent model. Analysis of the surface-wave amplitudes suggests that the Mw=8.2 aftershock had a large centroid depth between 30 km and 40 km. This major earthquake sequence brings a new perspective to the seismotectonics of the equatorial Indian Ocean and reveals active deep lithospheric deformation
    • 

    corecore