7 research outputs found

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Epigenetic age acceleration as a biomarker for impaired cognitive abilities in adulthood following early life adversity and psychiatric disorders

    No full text
    Background: Early life adversity and psychiatric disorders are associated with earlier declines in neurocognitive abilities during adulthood. These declines may be preceded by changes in biological aging, specifically epigenetic age acceleration, providing an opportunity to uncover genome-wide biomarkers that identify individuals most likely to benefit from early screening and prevention. Methods: Five unique epigenetic age acceleration clocks derived from peripheral blood were examined in relation to latent variables of general and speeded cognitive abilities across two independent cohorts: 1) the Female Growth and Development Study (FGDS; n = 86), a 30-year prospective cohort study of substantiated child sexual abuse and non-abused controls, and 2) the Biological Classification of Mental Disorders study (BeCOME; n = 313), an adult community cohort established based on psychiatric disorders. Results: A faster pace of biological aging (DunedinPoAm) was associated with lower general cognitive abilities in both cohorts and slower speeded abilities in the BeCOME cohort. Acceleration in the Horvath clock was significantly associated with slower speeded abilities in the BeCOME cohort but not the FGDS. Acceleration in the Hannum clock and the GrimAge clock were not significantly associated with either cognitive ability. Accelerated PhenoAge was associated with slower speeded abilities in the FGDS but not the BeCOME cohort. Conclusions: The present results suggest that epigenetic age acceleration has the potential to serve as a biomarker for neurocognitive decline in adults with a history of early life adversity or psychiatric disorders. Estimates of epigenetic aging may identify adults at risk of cognitive decline that could benefit from early neurocognitive screening

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    No full text
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    No full text
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    South Africa

    No full text
    corecore