746 research outputs found

    Local inversion-symmetry breaking controls the boson peak in glasses and crystals

    Get PDF
    It is well known that amorphous solids display a phonon spectrum where the Debye ω2\sim \omega^2 law at low frequency melds into an anomalous excess-mode peak (the boson peak) before entering a quasi-localized regime at higher frequencies dominated by scattering. The microscopic origin of the boson peak has remained elusive despite various attempts to put it in a clear connection with structural disorder at the atomic/molecular level. Using numerical calculations on model systems, we show that the microscopic origin of the boson peak is directly controlled by the local breaking of center-inversion symmetry. In particular, we find that both the boson peak and the nonaffine softening of the material display a strong positive correlation with a new order parameter describing the local inversion symmetry of the lattice. The standard bond-orientational order parameter, instead, is shown to be a poor correlator and cannot explain the boson peak in randomly-cut crystals with perfect bond-orientational order. Our results bring a unifying understanding of the boson peak anomaly for model glasses and defective crystals in terms of a universal local symmetry-breaking principle of the lattice.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Physical Society

    A COLREGs-Compliant Decision Support Tool to Prevent Collisions at Sea

    Get PDF
    Groundings and collisions still represent the highest percentage of marine accidents despite the current attention on Maritime Education and Training and the improvement of sensor capability. Most of the time, a collision is caused by a human error with consequences ranging from moderate to severe, with a substantial impact on both environment and life safeguarded at sea. In this paper, a brief statistical data regarding human element as a root cause of marine incidents together with collision regulations misunderstanding is presented as a background chapter. Furthermore, the present work discusses a decision support system architecture to suggest an appropriate action when the risk of a potential collision is detected. The proposed architecture system is based on various modules integrated with proper sensor input data regarding the surrounding navigation area. As a result, the tool can support the Officers of Watch in the decision‐making process providing an early suggestion in compliance with the COLlision REGulations. The proposed system is intended to be used onboard independently from the degree of automation of the ship, and it is based on AIS, which is mandatory, making it widely applicable. The proper use of the system can considerably reduce the number of collisions, as demonstrated by the obtained results

    Discussion of 010405JOR by J. Kim et al

    Get PDF

    Shear-driven solidification of dilute colloidal suspensions

    Get PDF
    We show that the shear-induced solidification of dilute charge-stabilized (DLVO) colloids is due to the interplay between the shear-induced formation and breakage of large non-Brownian clusters. While their size is limited by breakage, their number density increases with the shearing-time. Upon flow cessation, the dense packing of clusters interconnects into a rigid state by means of grainy bonds, each involving a large number of primary colloidal bonds. The emerging picture of shear-driven solidification in dilute colloidal suspensions combines the gelation of Brownian systems with the jamming of athermal systems

    Nonmonotonic dependence of polymer glass mechanical response on chain bending stiffness

    Get PDF
    We investigate the mechanical properties of amorphous polymers by means of coarse-grained simulations and nona ne lattice dynamics theory. A small increase of polymer chain bending sti ness leads rst to softening of the material, while hardening happens only upon further strengthening of the backbones. This nonmonotonic variation of the storage modulus G0 with bending sti ness is caused by a competition between additional resistance to deformation o ered by sti er backbones and decreased density of the material due to a necessary decrease in monomer-monomer coordination. This counter-intuitive nding suggests that the strength of polymer glasses may in some circumstances be enhanced by softening the bending of constituent chains.CN acknowledges the Maudslay-Butler Research Fellowship at Pembroke College, Cambridge for financial support; VVP and AZ acknowledge financial support from the US Army Research Laboratory under grant nr. W911NF 16-2-0091

    Nonequilibrium free energy of colloidal glasses under shear

    Get PDF
    The free energy of hard-sphere systems provides a direct link between the particle-scale structure and macroscopic thermodynamic properties. Here, we employ this framework to investigate the shear-induced structure of a colloidal glass, and link it to its macroscopic mechanical and thermodynamic state. We measure the nonequilibrium free energy under shear from the free volumes of the particles, and monitor its evolution with the applied strain. Unlike crystals, for which the elastic energy increases quadratically with strain due to affine particle displacements, for glasses the free energy decreases due to non-affine displacements and dissipation, reflecting the ability of the glass to reach deeper free-energy minima. We model this decrease using the nonaffine shear modulus and a standard viscous dissipative term. Our model and measurements allow us to disentangle the complex contributions of affine and nonaffine particle displacements in the transient shear deformation of glasses

    Quantifying the Reversible Association of Thermosensitive Nanoparticles

    Get PDF
    Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles

    The relation between stretched-exponential relaxation and the vibrational density of states in glassy disordered systems

    Get PDF
    Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-dependent elastic modulus, etc. This behaviour is prominent especially near the glass transition. In this Letter we show, on the example of dielectric relaxation, that stretched-exponential relaxation is intimately related to the peculiar lattice dynamics of glasses. By reformulating the Lorentz model of dielectric matter in a more general form, we express the dielectric response as a function of the vibrational density of states (DOS) for a random assembly of spherical particles interacting harmonically with their nearest-neighbours. Surprisingly we find that near the glass transition for this system (which coincides with the Maxwell rigidity transition in this model), the dielectric relaxation is perfectly consistent with stretched-exponential behaviour with Kohlrausch exponents 0.56<β<0.65, which is the range where exponents are measured in most experimental systems. Crucially, the root cause of stretched-exponential relaxation can be traced back to soft modes (boson-peak) in the DOS
    corecore