209 research outputs found

    Accurate near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy

    Full text link
    We investigate magnetic Feshbach resonances in two different ultracold K-Rb mixtures. Information on the K(39)-Rb(87) isotopic pair is combined with novel and pre-existing observations of resonance patterns for K(40)-Rb(87). Interisotope resonance spectroscopy improves significantly our near-threshold model for scattering and bound-state calculations. Our analysis determines the number of bound states in singlet/triplet potentials and establishes precisely near threshold parameters for all K-Rb pairs of interest for experiments with both atoms and molecules. In addition, the model verifies the validity of the Born-Oppenheimer approximation at the present level of accuracy.Comment: 9 pages, 7 figure

    Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics

    Full text link
    Ferromagnetism is a manifestation of strong repulsive interactions between itinerant fermions in condensed matter. Whether short-ranged repulsion alone is sufficient to stabilize ferromagnetic correlations in the absence of other effects, like peculiar band dispersions or orbital couplings, is however unclear. Here, we investigate ferromagnetism in the minimal framework of an ultracold Fermi gas with short-range repulsive interactions tuned via a Feshbach resonance. While fermion pairing characterises the ground state, our experiments provide signatures suggestive of a metastable Stoner-like ferromagnetic phase supported by strong repulsion in excited scattering states. We probe the collective spin response of a two-spin mixture engineered in a magnetic domain-wall-like configuration, and reveal a substantial increase of spin susceptibility while approaching a critical repulsion strength. Beyond this value, we observe the emergence of a time-window of domain immiscibility, indicating the metastability of the initial ferromagnetic state. Our findings establish an important connection between dynamical and equilibrium properties of strongly-correlated Fermi gases, pointing to the existence of a ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference

    Control of the interaction in a Fermi-Bose mixture

    Full text link
    We control the interspecies interaction in a two-species atomic quantum mixture by tuning the magnetic field at a Feshbach resonance. The mixture is composed by fermionic 40K and bosonic 87Rb. We observe effects of the large attractive and repulsive interaction energy across the resonance, such as collapse or a reduced spatial overlap of the mixture, and we accurately locate the resonance position and width. Understanding and controlling instabilities in this mixture opens the way to a variety of applications, including formation of heteronuclear molecular quantum gases.Comment: 5 Page

    Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: Elastic versus inelastic interactions

    Full text link
    We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughly investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.Comment: Submitted to EPJD, EuroQUAM special issues "Cold Quantum Matter - Achievements and Prospects", v2 with updated calibration of magnetic field (+4mG correction) and updated figures 4 and

    Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

    Full text link
    We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia

    Tunneling transport of unitary fermions across the superfluid transition

    Get PDF
    We investigate the transport of a Fermi gas with unitarity-limited interactions across the superfluid phase transition, probing its response to a direct current (dc) drive through a tunnel junction. As the superfluid critical temperature is crossed from below, we observe the evolution from a highly nonlinear to an Ohmic conduction characteristic, associated with the critical breakdown of the Josephson dc current induced by pair condensate depletion. Moreover, we reveal a large and dominant anomalous contribution to resistive currents, which reaches its maximum at the lowest attained temperature, fostered by the tunnel coupling between the condensate and phononic Bogoliubov-Anderson excitations. Increasing the temperature, while the zeroing of supercurrents marks the transition to the normal phase, the conductance drops considerably but remains much larger than that of a normal, uncorrelated Fermi gas tunneling through the same junction. We attribute such enhanced transport to incoherent tunneling of sound modes, which remain weakly damped in the collisional hydrodynamic fluid of unpaired fermions at unitarity

    Observation of subdiffusion of a disordered interacting system

    Full text link
    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter

    Quasiparticle Lifetime of the Repulsive Fermi Polaron

    Get PDF
    We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is dominated by many-body dephasing within the upper repulsive branch rather than by relaxation from the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas
    corecore