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We investigate the transport of a Fermi gas with unitarity-limited interactions across the superfluid phase
transition, probing its response to a direct current (dc) drive through a tunnel junction. As the superfluid
critical temperature is crossed from below, we observe the evolution from a highly nonlinear to an Ohmic
conduction characteristic, associated with the critical breakdown of the Josephson dc current induced by
pair condensate depletion. Moreover, we reveal a large and dominant anomalous contribution to resistive
currents, which reaches its maximum at the lowest attained temperature, fostered by the tunnel coupling
between the condensate and phononic Bogoliubov-Anderson excitations. Increasing the temperature, while
the zeroing of supercurrents marks the transition to the normal phase, the conductance drops considerably
but remains much larger than that of a normal, uncorrelated Fermi gas tunneling through the same junction.
We attribute such enhanced transport to incoherent tunneling of sound modes, which remain weakly
damped in the collisional hydrodynamic fluid of unpaired fermions at unitarity.

Quantum mechanical tunneling underlies many
fundamental phenomena in physics, and it is the backbone
for the operation of a variety of electronic devices, ranging
from flash memories to SQUID magnetometers. A minimal
realization of quantum tunneling is a so-called tunnel
junction, created by connecting two conducting materials
through a thin insulating layer or potential barrier [1].
Tunnel junctions represent a unique architecture to under-
stand the elementary many-body mechanisms behind
mesoscopic transport in quantum systems [1–3], hinging
essentially on the nature of elementary excitations above
the ground state [4]. In fermionic systems with attractive
interactions, pairing correlations deeply affect both the
equilibrium state and its low-energy excitations, leading to
superfluidity when fermion pairs condense below the
critical temperature. The excitation spectrum of fermion
condensates incorporates both fermionic quasiparticles
[5,6] and gapless Bogoliubov-Anderson (BA) phonons
[6–9]. While the former correspond to pair-breaking
excitations, the latter are associated with spontaneous
symmetry breaking [10], and are essential for the con-
densate to acquire superfluid properties [11].
Whereas electron transport in superconducting tunnel

junctions (STJs) is well understood within the Bardeen-
Cooper-Schrieffer (BCS) regime of weak attractive inter-
actions, where fermionic degrees of freedom govern
both supercurrents and incoherent currents [12,13], a more
intricate interplay between phononic and fermionic exci-
tations is expected to arise in strongly attractive
Fermi systems [8,9,14,15]. Atomic Fermi gases near a
Feshbach resonance provide a well-controlled framework

for addressing two-terminal transport in strongly interact-
ing quantum fluids [16], allowing one to reach the
universal, unitarity-limited interaction regime [9]. In par-
ticular, resonant Fermi gases represent the most robust
known instance of fermionic superfluidity, and feature
hydrodynamic behavior even in the normal phase [17–
19]. This has spurred experimental investigations of meso-
scopic transport in unitary superfluid junctions [20–26],
which have revealed nonlinear current-bias characteristics
from multiple Andreev reflections [22] or Josephson
supercurrents [25].
In this work, we explore the tunneling conduction of a

resonant atomic Fermi gas across the superfluid transition.
We show that both supercurrents and normal currents
react distinctly to the temperature, as they are tied to the
amplitude of the superfluid order parameter—the pair
condensate density—and to its excitation modes. In par-
ticular, by measuring the response to a tunable direct
current (dc) drive Iext in a tunnel junction at varying
temperature T, we observe the critical breakdown of
coherent Josephson transport. The dependence of the
maximum supercurrent Is;max on the temperature is cap-
tured by a theoretical model relying on the thermal
depletion of the condensate density, which vanishes at
the critical temperature Tc. Further, we reveal a large
anomalous contribution to the bias-independent conduct-
ance, dominating the resistive current branch arising for
jIextj > Is;max at low temperatures, which we ascribe to the
conversion of the condensate into phononic BA modes.
Being fueled by the condensate, unlike quasiparticle
currents in STJs, the ensuing normal current decreases
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towards Tc, above which broken pairs are expected to
eventually become the dominant current carriers. Indeed,
by measuring the scaling of conductance with the tunneling
barrier strength, we distinguish conduction mediated by
paired or unpaired fermions. Yet, for T ≳ Tc the conduct-
ance remains much larger than that measured in a metallic
state, even though BA phonons cannot propagate in the
absence of the order parameter. We ascribe this to incoher-
ent tunneling of hydrodynamic sound modes, stabilized by
elastic collisions between unpaired fermions. Our mea-
surements support scenarios where no significant pre-
formed pair fraction exists at unitarity above Tc [27–29].
In our experiment, two tunnel-coupled, strongly inter-

acting atomic reservoirs are created by confining a
Feshbach-resonant Fermi gas into a hybrid optical poten-
tial, combining a harmonic optical trap with repulsive
potentials tailored by a digital micromirror device

(DMD). Each reservoir contains approximately NR;L ≃ 4 ×
104 atoms in each of the two lowest hyperfine states of 6Li.
The reservoirs are set initially in thermochemical equilib-
rium, and their temperature is adjusted between T=TF ¼
0.07ð1Þ and 0.23(1), across the superfluid transition for
unitarity-limited interactions at Tc ≃ 0.21TF [29,30]. Here,
EF and TF ¼ EF=kB are the in-trap Fermi energy and
temperature [31]. The optical setup for creating and driving
the tunnel junction is illustrated in Fig. 1(a). The reservoirs
are separated by a thin, repulsive optical barrier, which is
Gaussian along the x direction with a 1=e2 width w0 ≃
0.95ð9Þ μm and nearly homogeneous along the y and z
direction [25,31]. Its intensity profile and position are
controlled by the DMD, whose surface is imaged onto
the atomic sample through a high-resolution objective,
creating also two sharp axial end caps. To initialize the
junction, the barrier is adiabatically raised at the trap center
to the target potential height V0 experienced by one
fermion. This creates two identical reservoirs with vanish-
ing relative imbalance z ¼ ðNL − NRÞ=N ≃ 0, and corre-
spondingly vanishing chemical potential difference
Δμ ¼ μL − μR ≃ 0, where N ¼ NL þ NR and μR;L are
the fermion chemical potentials in the reservoirs. To probe
the response of the junction to an external dc drive, we set
the potential barrier in uniform motion with respect to the
gas [25,45,46]. The imparted current Iext is proportional to
the barrier velocity v, and for a constant total barrier
displacement δx ≃ 10 μm, Iext ¼ −z̄N=2 × jvj=δx, where
z̄ ≃�0.15 is the relative imbalance at equilibrium for the
final barrier position x ¼ �δx. By measuring the relative
imbalance z after the barrier displacement via in situ
absorption imaging [see Fig. 1(b)], we determine the
induced potential difference Δμ ¼ ðz − z̄ÞEcN=2. Here,
Ec ¼ 2∂μL=∂NL (calculated with NL ¼ N=2) is the effec-
tive charging energy of the junction, that is the inverse
compressibility of the reservoirs quantifying their density
response to currents [14,45].
In a full measurement at fixed temperature, we obtainΔμ

as a function of Iext, corresponding to the “current-voltage”
I-Δμ response of the junction [25]. Figure 2(a) illustrates
the effect of reservoir temperature on such response at
unitarity. At low temperature, the junction exhibits Δμ ≃ 0

for jIextj ≤ Is;max, implying vanishing resistance below a
maximum current Is;max. By raising the temperature,
smaller values of Iext suffice to yield a finite jΔμj > 0.
Eventually, Is;max vanishes and any nonzero applied current
produces a chemical potential difference, hence the junc-
tion becomes fully resistive. Crucially, the junction crosses
over from a nonlinear to an Ohmic current-potential
characteristic, reflecting the phase transition of the system
from the superfluid to the normal state [13,47,48]. Within
the linear response regime Δμ ≪ μ0 explored here, where
μ0 is the peak chemical potential in the absence of barrier,
the current injected through the junction can be decom-
posed as [13,48]
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FIG. 1. A current-driven tunnel junction between resonant
Fermi gases across the superfluid transition. (a) Experimental
realization of a tunneling dc drive by dynamical optical poten-
tials. The surface of a DMD displaying the junction geometry,
composed of a central barrier and two end caps, is projected onto
the atoms through a NA ≃ 0.5 objective, creating a repulsive
potential VðrÞ. The barrier is set in uniform motion at velocity v
by playing a sequence of images on the DMD at the desired frame
rate, and is swept over a distance δx along the x axis. (b) In situ
absorption images of the atomic density at unitarity, acquired
immediately after completing a δx ≃ 10 μm barrier translation.
The column-integrated density profiles n2Dðx; yÞ are shown for an
injected current Iext ≃ 3.9 × 105 s−1 at (i) T ¼ 0.08ð1ÞTF and
(ii) T ¼ 0.18ð1ÞTF. While no density difference is visible
between the two reservoirs for the colder sample, the hotter
one displays a density increase in the left reservoir, producing a
chemical potential bias Δμ ≠ 0 across the junction.
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Iext ¼ IsðφÞ þGΔμþ CΔ _μ; ð1Þ

where φ ¼ φL − φR is the phase difference between the
pair condensates in the reservoirs, IsðφÞ is the current-
phase relation of the junction, G is the bias-independent
tunneling conductance, and C ¼ 1=Ec is the effective
junction capacitance. For barrier heights V0=μ0 ∼ 1, cor-
responding to small junction transmissions jtpj2 ≪ 1,
where tp is the tunneling amplitude of a single pair, one
can retain only the first two orders in the tunnel coupling
[14,25] such that IsðφÞ ≃ I1 sinφþ I2 sin 2φ, where the
coefficients In are of order jtpjn [14,49]. In the absence of

an initial bias potential, Is;max ¼ maxφ∈½0;πÞ jIsðφÞj sets the
largest value of Iext for which the junction exhibits zero
normal current, i.e., Δμ ¼ 0 for jIextj ≤ Is;max. The
observed zero-potential plateaus [see Fig. 2(a)] gauge
therefore the maximum Josephson supercurrent flowing
through the junction [25], which vanishes for T ≥ Tc in the
normal state. On the other hand, the charging rate GEc sets
the timescale for the junction resistive response. Combining
Eq. (1) with the Josephson-Anderson relation ℏ _φ ¼ −Δμ
yields the resistively and capacitively shunted junction
(RCSJ) circuit model, widely applied to STJs [48]. To
characterize the junction response, we fit the measured
I-Δμ curves with the numerical solution of such a RCSJ
model [31], extracting Is;max and G for each temperature.
Figure 2(b) shows the obtained Is;max at unitarity as a

function of the reservoir temperature. The observed trend
resembles that predicted within BCS theory by the
Ambegaokar-Baratoff (AB) formula, Is;max ¼ πΔ=2 ×
Gn tanhðΔ=2kBTÞ [51], where Δ is the superconducting
gap, andGn is the conductance of the junction in the normal
state right above Tc, set essentially by the single-fermion
tunneling probability. However, the weak-coupling AB
result is not expected to hold at strong interactions, even
for T ¼ 0 [52,53]. Therefore, we model our system by
generalizing to finite temperatures the effective theory
presented in Refs. [25,53], where the Josephson super-
current is explicitly linked to the condensate density,
obtaining the shaded curve in Fig. 2(b) [31]. For this,
we exploit Luttinger-Ward calculations of the condensate
fraction for a homogeneous unitary Fermi gas [54], as well
as its equation of state [50] in the local density approxi-
mation (LDA). With no free parameters, the model quan-
titatively reproduces the experimental data, evidencing a
firm connection between Is;max and the condensate density
at any temperature. Yet, some discrepancy appears when
approaching Tc. While the calculated Is;max vanishes
essentially at Tc [dashed vertical line Fig. 2(b)], the
measured one sharply drops to nearly zero already at
T0 < Tc. Such deviation could result from the radial
inhomogeneity of the gas, causing different shells to
undergo the superfluid transition at different T.
Furthermore, a finite Δμ at T < Tc could develop from
thermal fluctuations in the superfluid state [47,55]. In
particular, stochastic thermal phase slips, whose probability
scales as expð−2ℏIs;max=kBTÞ [55], are expected to become
relevant when ℏIs;max ≲ EF, which in our system occurs at
T ≳ 0.17TF. We determine the critical temperature T0 for
the breakdown of Josephson supercurrents through a
piecewise function fit of Is;maxðTÞ [31]. At unitarity
T0 ¼ 0.19ð1ÞTF, consistent with what is expected from
thermal phase slips, but also with the value Tc ¼ 0.21ð1ÞTF
predicted by the Luttinger-Ward technique [30] within
their respective uncertainties. The same procedure is
used to determine T0 at different interaction strengths,
parametrized by ðkFaÞ−1 where kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEF
p

=ℏ and a is

Is,max

     0.08(1) TF

     0.15(1) TF

     0.18(1) TF

(b)

(a)

s
xa

m,

(c)

FIG. 2. Breakdown of dc tunneling supercurrents in strongly
interacting Fermi gases. (a) Current-potential I-Δμ characteristics
of the junction at unitarity for different gas temperatures T=TF
(see legend). Solid lines represent fits of experimental data with a
RCSJ circuit model [31]. The fitted values for the maximum
supercurrent Is;max are denoted by arrows on the bottom axis.
Error bars denote the standard deviation of the mean (s.e.m.) from
averaging over ∼10 experimental realizations. (b) Is;max at
unitarity as a function of the reduced temperature T=TF. Vertical
(horizontal) error bars combine the standard error on Is;max
(temperature) with statistical errors from averaging typically
two independent extractions. The shaded region indicates the
calculated Is;max (see text), considering a 10% uncertainty around
the nominal barrier width and a 3.5% uncertainty on the
calculated EF. The barrier height is fixed at V0=μ0 ≃ 0.7, where
μ0 ≈ 0.6EF [50]. The dashed vertical line marks the predicted
critical temperature Tc for the superfluid transition at unitarity
[30]. (c) Critical temperature T0=TF for the disappearance of
Josephson currents as a function of interaction strength ðkFaÞ−1.
Experimental results are compared with the theoretically obtained
Tc from Ref. [29] (green dashed line).
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the s-wave scattering length, as displayed in Fig. 2(c).
The observed monotonic increase of T0 from negative to
positive couplings reflects that of the superfluid critical
temperature Tc [9,29].
The bias-independent tunneling conductance G obtained

at unitarity is shown in Fig. 3(a) as a function of tempera-
ture, normalized to the measured (normal-state) conduct-
ance G0 ¼ 102ð15Þh−1 of a noninteracting Fermi gas. G
increases monotonically with decreasing T, taking values
as large asG ∼ 102G0 ∼ 104h−1, and greatly exceedsG0 for
any T. We compute the normal-state conductance of the
junction considering zero-temperature ideal fermionic res-
ervoirs within the LDA [31], obtaining Gn ¼ 160ð29Þh−1,
in reasonable agreement with the measured G0. The
mismatch between the measured G and G0 (or the esti-
mated Gn) indicates that normal currents in our neutral gas
junction do not arise from incoherent pair or quasiparticle
tunneling, but rather from collective bosonic excitations
[15,23]. In the small bias regime at low temperature
Δμ ≪ Δ, broken pairs are energetically suppressed as
expð−Δ=kBTÞ, and the only accessible excitations out of
the condensate are gapless low-momentum BA phonons
[8,17]. Only at T ∼ Tc, fermionic quasiparticles proliferate,
and their incoherent tunneling may take over as the
main conduction mechanism. Conversely, pair-breaking
processes in STJs typically determine both the maximum
Josephson supercurrent and normal tunneling current [13],
while no key role is played by BA phonons that are lifted
into gapped plasmons by the Coulomb repulsion [7].
A phononic contribution to the dc conductance, arising

from the tunnel coupling between the condensate in one
reservoir and sound modes in the other, has indeed been

predicted both for weakly interacting BECs [14] and
recently for neutral fermionic superfluids in the BCS
regime [15]. Such anomalous contribution is maximum
at T ¼ 0, being fostered by the condensate and its gapless
phononic excitations. Additionally, a normal contribution
to the conductance is expected from incoherent tunneling
of phononic excitations, whose population does not vanish
at T ¼ 0 owing to quantum depletion, and grows as ∼T4

at low temperatures [9,14]. While a full description of
tunneling transport at unitarity remains an open theoretical
challenge, fermionic quasiparticle transport appears essen-
tially irrelevant with respect to the experimentally obtained
conductance, which provides strong evidence for anoma-
lous tunneling currents in unitary superfluids. The anoma-
lous character of the low-temperature conductance is
further confirmed by extracting the ratio Is;max=G [see
Fig. 3(b)]. Whereas in STJs this quantifies the super-
conducting gap via the AB formula [13,51], the approx-
imately constant value observed here until nearby T0

demonstrates the tight relation between G and the con-
densate density. As the temperature approaches Tc, the
anomalous term is expected to extinguish its effect, and
significant incoherent tunneling should set in. However,
unlike collisionless gases where fermionic quasiparticles
are the only available excitations above Tc, our strongly
interacting fluid supports weakly damped hydrodynamic
sound even in the normal phase, with no distinct signature
emerging at low momenta across the superfluid transition
[18,19]. Therefore, phonon tunneling is not expected to
fade at Tc, explaining the observed trend of G: despite
dropping by nearly an order of magnitude from its
maximum, G remains much larger than G0 also for T ≳ Tc.
The tunnel conductance also provides information about

the nature of current carriers, being sensitive to whether
transport is mediated by pairs or unpaired fermions. In the
absence of pair breaking, resistive currents arise only at
second order in the tunnel coupling between pairs in the
reservoirs [14,56], namely G ∝ jtpj2. We directly confirm
this scaling by comparing the conductance and the
supercurrent amplitude at varying barrier strength, finding
G1=2 ∝ Is;max ∼ jtpj at low temperature [inset of Fig. 4(a)].
On the other hand, when broken pairs prevail, G should
reflect the single-fermion tunneling probability jtFj2,
namely G ∝ jtFj2. In the tunneling limit, both jtpj and
jtFj decrease exponentially with the adimensional barrier
strength ηb ¼ kFd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=EF

p
, d ¼ 0.6w0 being the effective

barrier size [31]. Yet, one can show that log jtpj ≈ 2 log jtFj,
when accounting for the different mass and polarizability of
bound pairs and unpaired atoms [31]. Figures 4(a)–4(c)
compare the measured scaling of the charging rate GEc
with ηb, for three distinct regimes across the super-
fluid transition. In all regimes, we observe indeed that
logGEc ∝ −ηb. Remarkably, a unitary gas at T ≃ Tc [panel
(b)] exhibits a weaker dependence of GEc on ηb than a
unitary superfluid at T ≃ 0.3Tc [panel (a)], whereas its
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FIG. 3. Bias-independent tunneling conductance G as a func-
tion of T=TF, measured at unitarity under the same experimental
conditions of Fig. 2. (a) G is normalized to the conductance per
spin component G0 ¼ 102ð15Þh−1 of a noninteracting Fermi gas,
measured at T ¼ 0.21ð1ÞTF with an equivalent barrier height
V0=μ0 ≃ 0.73. Vertical (horizontal) error bars combine the
standard error on the extracted conductance (temperature) with
statistical errors from averaging typically two independent ex-
tractions. The dashed vertical line locates the theoretical critical
temperature Tc at unitarity [30]. (b) Experimentally obtained
Is;max=G as a function of T=TF.
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behavior matches that of a normal attractive Fermi gas at
T > Tc [panel (c)]. Performing linear fits of logGEc, we
find a ratio of 2.5(3) between the slopes in the superfluid
and critical unitary regimes, nearly compatible with the
factor 2 expected between tightly bound pairs and free
fermions. Such observations point to a distinctive change of
resistive-current carriers from pairs to single fermionic
quasiparticles, upon crossing Tc from below. Further, our
measurements suggest that for T ≃ 0.20TF incoherent
transport at unitarity is dominated by unpaired fermions,
although weak “pseudogap” correlations [29,57–59], to
which low-momentum phonons are essentially insensitive
[19], may exist—and could be probed through spin
conductance [60].
In conclusion, we have demonstrated that tunneling

currents constitute a powerful probe of the superfluid order
parameter of unitary fermions at finite temperatures,
providing a striking signature of the superfluid phase
transition [50,62,63]. The order parameter is found to
impact both zero-resistance and Ohmic conduction, feeding
Josephson and anomalous normal currents, hence high-
lighting significant differences between transport in neutral
and charged quantum fluids. We anticipate the observed
anomalous low-resistance conduction to be a generic
feature, not restricted to the large-area, multimode junction
used here, as suggested by recent theoretical investigations
of weakly interacting neutral superfluids at quantum point
contacts [15,56]. In the future, it will be interesting to focus
on the regime T ≃ Tc, where thermally activated phase slips
modify the current-potential characteristics [47,55] and

conduction may be influenced by pairing fluctuations
[28,64,65]. The anomalous and normal contributions to
Ohmic currents could be disentangled by measuring heat
transport [15,24,56]. Finally, realizing a spin-current drive
within the same tunneling geometry will enable us to probe
fermion correlations in the pseudogap regime [60].
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