8 research outputs found
Microstructural characterization of U-7.5Nb-2.5Zr alloy after ageing and constrained fatigue
U-7.5Nb-2.5Zr cladded in Zircaloy-4 is one of the most studied fuel prototypes. The Nb and Zr are added to the U to stabilize the body-centered cubic (BCC) gamma phase and grant mechanical and swelling resistance. The U-7.5Nb-2.5Zr undergoes the gamma to α′′ phase transformation, generating compressive stresses due to the volume reduction. The α′′ phase also can transform to a combination of α + γ2 phase (equilibrium phases), which are known to be hard and brittle. This work had the objective to test the effect of ageing the gamma to α′′ phase in thermal cycling of a U-7.5Nb-2.5Zr cladded in Zircaloy-4 part. A co-laminated specimen was aged and thermally cycled in a dilatometry experiment. The samples were characterized through X-ray diffraction and metallography. The results show that the gamma to α′′ phase transformations occur at the begin- ning of the initial ageing, followed by stress relief. During the cycling, the sample demonstrated non-equal thermal strains and presented fractures along with the U matrix
Modification of CdSe and PbSe thin films by electron beam irradiation
Membranas auto-sustentáveis compostas por filmes finos com múltiplas camadas SiO2/ ( 30 nm)/CdSe( 3,0nm)/SiO2 (18 nm) e SiO2( 30 nm)/PbSe( 3,0nm)/SiO2( 18 nm) foram produzidas por magnetron sputtering e submetidas à irradiação com feixe de elétrons em microscópios de transmissão eletrônica convencionais na faixa de energia de 80 a 300 keV em densidades de corrente de 0,3 a 8,0 A cm-2. Variações de contraste observadas em micrografias adquiridas com diferentes doses de elétrons sinalizam uma considerável redistribuição atômica nos filmes semicondutores, tal redistribuição é restrita às regiões iluminadas e possui maior dependência em relação à dose do que à densidade de corrente do feixe. Medidas de difração com área selecionada (Select Area Diffraction - SAD), observações em condição de alta resolução (High Resolution Transmission Microscopy - HRTEM) e medidas de dispersão em energia de Raio-X característico (Energy Dispersive Spectroscopy - EDS) indicam que ambos semicondutores mantém a estrutura cristalina e a quantidade de átomos de Cd, Se e Pb durante irradiação. As membranas SiO2/CdSe/SiO2 apresentam uma retração contínua e homogênea das interfaces CdSe/SiO2 ao longo da superfície irradiada, a nucleação e crescimento de regiões com apenas SiO2 dá origem a uma rede percolada de CdSe que é desmembradas em nanofios nodulares e nanopartículas isoladas. Os filmes de PbSe não apresentam um processo homogêneo e contínuo durante irradiação. Inicialmente, as interfaces PbSe/SiO2 apresentam perda das arestas de alto ângulo Neste caso, as modificações microestruturais são mais intensas após uma dose limite e em regiões específicas, próximas a buracos de SiO2 previamente existentes na amostra como depositada. Medidas SAD, micrografias em condição de campo escuro e análises de imagem HRTEM mostram que a irradiação no PbSe causa separação de fases, identificada por distribuições de nanopartículas de Pb interfaceadas com uma rede planar percolada de PbSe. A conservação de matéria nos sistemas permitiu determinar os fluxos atômicos durante irradiação, o que foi realizado pelo tratamento numérico das micrografias adquiridas em diferentes doses. A investigação do aquecimento da amostra e do comportamento dos sistemas quando irradiados em diferentes energias e densidades de corrente sugerem que os deslocamentos atômicos podem ser correlacionados com as probabilidades de interação entre elétrons e átomos alvo. Isto permitiu a comparação entre fluxos atômicos experimentais, obtidos pelo tratamento numérico das micrografias TEM, com fluxos atômicos deduzidos em função das seções de choque para deslocamentos atômicos diretos, induzidos por colisões elásticas entre elétrons e átomos alvo, e deslocamentos indiretos, causados por radiólise. Os fluxos teóricos consideram variações nas taxas de deslocamento dos átomos de Cd, Se e Pb ao longo da interface semicondutor/SiO2, tais variações são entendidas como consequência de mudanças na energia de coesão das interfaces, que foram calculadas em função da curvatura e energia de superfície através do modelo de gota líquida (Líquid Drop Model - LDM) Comparações entre os fluxos atômicos inferidos das micrografias com os fluxos teóricos, obtidos das seções de choque para espalhamento elástico e inelástico de elétrons, permitiram estimar as energias de deslocamento dos átomos na interfaces e elaborar possíveis mecanismos para as mudanças microestruturais durante a irradiação. Os valores calculados de energia de deslocamento são inferiores às energias necessárias para deslocar átomos na superfície ou no interior da rede cristalina, mas podem ser aproximados às energias de migração atômica em interfaces. Os resultados mostram que os mecanismos de deslocamento atômico nos filmes finos de CdSe e PbSe não são os mesmos. As mudanças microestruturais observadas nos filmes finos de CdSe não podem ser explicadas apenas em termos de colisões balísticas dos elétrons, mas poderiam ocorrer por deslocamentos radiolíticos, principalmente se houverem estados de interface e meia banda que permitam excitações com energias transferidas menores que a largura de banda do CdSe. Já os resultados das irradiações no PbSe podem ser explicados como decorrentes de deslocamentos diretos, causados pela colisão balística dos elétrons nos átomos de Pb e Se pouco coesos nos planos PbSe{111}. Contudo, este estudo não permite excluir um possível processo de múltiplas ionizações como causa dos fluxos atômicos durante irradiação de ambas membranas.Self-standing membranes compounded for multilayers SiO2/( 30 nm)/CdSe ( 3.0nm) /SiO2 (18 nm) and SiO2( 30 nm)/PbSe( 3.0nm)/SiO2( 18 nm) were irradiated in conventional Transmission Electron Microscopes (TEM) at energy range of 80 - 300 keV, current densities 0.3 - 8.0 A cm-2. The image contrasts of the micrographs acquired at different electron doses show an intense atomic redistribution in the semiconductor films. The effects of irradiation are restricted on the irradiated regions and show a dose dependence instead electric current dependence. Select Area Diffraction (SAD), Energy Dispersive Spectroscopy (EDS) measurements and High Resolution Electron Transmission Microscopy (HRTEM) micrographs show that the both semiconductors mantained the crystal structure and quantity of Cd, Se and Pb atoms after irradiation. The SiO2/CdSe/SiO2 membranes have a homogeneously and continuous retraction of the CdSe/SiO2 interfaces along the irradiated regions. The SiO2 holes grow to produce a percolated planar network of CdSe. In larger doses this network is disrupted, producing nodular nanowires and isolated nanoparticles. Otherwise, the PbSe thin films did not show a homogeneous and continuous process. In the first minutes of irradiation, the SiO2 holes lost the edges of high angles, the retraction of the interfaces PbSe/SiO2 occurs only at a specific electron dose, after which there are growth and nucleation of new holes around the previous ones SAD measurements, dark field micrographs and HRTEM images attest phase separation during electron beam irradiation of the PbSe, the results show isolated Pb nanoparticles connected to a planar percolated network of PbSe. The matter conservation at the systems allowed the calculation of an atomic flux during the irradiation, what was made by the numerical treatment of the micrographs acquired at different electron doses. The investigation of the sample heating and the behavior of the systems when irradiated at different energies and current densities suggest that the atomic displacements can be correlated with the probabilities of electron-atom interactions. This allowed the comparison between the inferred atomic fluxes with atomic fluxes deduced by the cross sections for the ballistic displacement induced by elastic collision of the electrons and the atomic fluxes deduced by the inelastic cross sections, which show the probability of the indirect displacements induced by radiolysis. These fluxes consider changes in the displacement rates of the Cd, Se, and Pb atoms along the semiconductor/SiO2 due to changes in the cohesion energy at the interfaces, what was calculated in function of the curvature and surface energy using the Líquid Drop Model - LDM The comparison between the atomic fluxes inferred by the TEM micrographs with the theoretical fluxes obtained by the elastic and inelastic scaterring cross sections allowed extimations of the displacement energies of the Cd, Se e Pb atoms at the interfaces, what was used to argue some possibles mechanisms for the microstructural changes during the irradiation. The calculated displacement energies are lower than the bulk or surface displacement energies, but can be approximated with the migration energies for the atomic diffusion at the interfaces. The results suggest that the mechanisms of atomic displacement can not be the same for the thin films of CdSe and PbSe. The microstructural changes observed in the CdSe thin films can not be explained only in terms of ballistic displacements, but can be explained by indirect displacements induced by the radiolysis, especially if there are intermediate and middle band states that allow excitations with energies below the CdSe band-gap. In other way, the results of the PbSe can be explained by direct displacements caused by the ballistic collision of the electrons at the Pb and Se atoms placed in the unstable PbSe{111} planes. However, this study can not rule out the possibility of a multiple ionization process as the cause of the atomic fluxes in both membranes
Síntese e caracterização de nanocristais de PbSe em substrato SOI
Nesta dissertação são apresentados os resultados da síntese de nanocristais (NCs) de PbSe em substratos de Si e SOI. O material foi produzido pela técnica de Síntese por Feixe de Íons (IBS) seguido de tratamentos térmicos em alta temperatura. As amostras foram caracterizadas pelas técnicas de Retroespalhamento Rutherford (RBS) e Microscopia Eletrônica de Transmissão (TEM). O estudo abrangeu amostras implantadas apenas com Pb ou com Se, ou amostras sequencialmente implantadas com Pb e Se. As implantações foram realizadas com substrato aquecido a Ti = 400 °C para evitar amorfização, variandose parâmetros de implantação como fluência, energia e ordem de implantação (primeiro Se ou Pb). Os recozimentos foram realizados a diferentes temperaturas e tempos. Os resultados foram discutidos em termos da retenção dos íons e da reação de formação do PbSe. Os principais resultados podem ser resumidos da seguinte forma. Durante as implantações ocorrem perdas tanto de Pb como de Se, atribuídas a processos de difusão auxiliada por irradiação. Nas amostras implantadas com apenas um elemento não ocorrem perdas durante os tratamentos térmicos. Contudo, nas amostras implantadas com Pb e Se, ocorrem perdas tanto de Pb como de Se. Este fenômeno é discutido considerando difusão pela matriz e evaporação pela superfície. O aumento das perdas foi associado à reação de formação do composto PbSe. Esta reação produz nanocristais, formando discordâncias devido ao desajuste de rede cristalina nas interfaces PbSe/Si. As perdas de Pb ocorrem preferencialmente através de difusão em discordâncias. Diferentemente do Pb, os átomos de Se reagem de diferentes formas com a matriz, permanecendo retidos no substrato. As Distribuições em Tamanho de NCs (DTNs) possuem forma característica e pouca variação de forma em função do tempo, não sendo observado crescimento competitivo. Estes resultados podem ser interpretados com base em argumentos termodinâmicos. A estabilidade do sistema NCs de PbSe em matriz de Si ocorre devido a minimização da energia de superfície, através da formação de interfaces coerentes, semi-coerentes e de estruturas caroço-casca (caroço de PbSe e casca de Se) com interfaces Se/Si. Para tanto a reação de síntese do PbSe produz NCs com uma coleção de orientações específicas em relação a estrutura cristalina do Si. Análises das micrografias de alta resolução com técnicas de Transformada de Fourier demonstram que muitos destes NCs são deformados plasticamente para diminuir o desajuste com o Si. O presente estudo mostra que é possível produzir NCs de PbSe termicamente estáveis e cristalograficamente orientados em relação a estrutura cristalina do Si. A baixa entalpia de formação do PbSe e baixa solubilidade dos átomos de Pb e de Se favorece a síntese dos NCs. Contudo, o comportamento químico e cinético do sistema é complexo devido as diferentes interações Pb-Si e Se-Si.This work focuses on the synthesis of PbSe nanocrystals (NCs) in Si and SOI substrates. The NCs are produced by Ion Beam Synthesis (IBS) technique followed by thermal treatments at high temperatures. The samples are characterized by Rutherford Backscattering Spectrometry (RBS) and Transmission Electron Microscopy (TEM) techniques. The study comprises samples implanted with only one ion (Pb or Se) and samples implanted sequentially with Pb and Se, considering distinct implantation parameters (fluence, energy and ion sequence), performed at high temperature Ti = 400 °C to avoid amorphization. The thermal treatmen ts are done at distinct temperatures and times and the results are discussed in terms of the ion retention and of the PbSe compound formation. The most important results can be summarized as follow. During the implantations, Pb and Se losses take place and this phenomenon is attributed to the radiation enhanced diffusion process. Elemental losses cannot be detected for samples implanted with only one element. As opposed to this behavior, significant losses are observed for the co-implanted samples. These losses are attributed to the PbSe synthesis reaction. The formation of the NCs occurs concomitantly with the formation of treading dislocations induced by the large mismatch of the crystal PbSe/Si structures. The losses of Pb atoms can be attributed to a pipe diffusion processes along the dislocations. In contrast, the Se atoms tend to form atomic clusters and chemical bonds with Si crystal defects, and therefore are retained inside the matrix. The evolution of the NC size-distribution function is investigated, but no significant coarsening is observed. The results obtained are discussed using thermodynamic arguments. The thermal stability of the PbSe NCs is related to the formation of coherent, semicoherent interfaces as well as core-shell structures. The orientations of the PbSe NCs with respect to the Si matrix occur within a limited set of possibilities. High resolution TEM micrographs are analyzed using a Fast Fourier Transform method, which reveals the existence of plastically and elastically deformed interfaces. This study demonstrates that thermally stable and epitaxially oriented PbSe NCs can be synthesized in crystalline Silicon matrix. Their synthesis is facilitated by the low formation enthalpy and by the low solubility limit of the Pb and Se atoms within the Si matrix. However, the kinetic and chemical behavior of the process is rather complex due to the distinct Pb-Si and Se-Si interactions
Electron irradiation effects on the nucleation and growth of Au nanoparticles in silicon nitride membranes
The formation of Au nanoparticles (NPs) in Auþ ion-implanted silicon nitride thin films and membranes was investigated as a function of post-implantation thermal treatments or room temperature electron irradiation at energies of 80, 120, 160, and 200 keV. The samples were characterized by Rutherford Backscattering Spectrometry and Transmission Electron Microscopy. High-temperature thermal annealing (1100 C, 1 h) resulted in the formation of Au particles with a mean diameter of 1.3 nm. In comparison, room-temperature electron irradiation at energies from 80 to 200 keV caused the formation of larger Au particles according to two growth regimes. The first regime is characterized by a slow growth rate and occurs inside the silicon nitride membrane. The second regime presents a fast growth rate and starts when Au atoms become exposed to the back free surface of the membrane. Realistic binary electron-atom elastic collision cross-sections were used to analyze the observed nanoparticle growth and membrane sputtering phenomena. The results obtained demonstrate that binary electron-atom elastic collisions can account for the microstructure modifications if the critical displacement energies for the sputtering of N and Si atoms are around 1463 eV, and the displacement energy for surface located Au atoms is approximately 1.2560.2 eV. Irradiation experiments using focused electron probes demonstrate that the process provides fine control of nanoparticle formation, resulting in well-defined sizes and locations. Published by AIP Publishing
Aging effects on the nucleation of Pb nanoparticles in silica
The ion beam synthesis of Pb nanoparticles (NPs) in silica is studied in terms of a two step thermal annealing process consisting of a low temperature long time aging treatment followed by a high temperature short time one. The samples are investigated by Rutherford backscattering spectrometry and transmission electron microscopy. The results obtained show that highly stable Pb trapping structures are formed during the aging treatment. These structures only dissociate at high temperatures, inhibiting the nucleation of NPs in the metallic phase and causing an atomic redistribution that renders the exclusive formation of a two dimensional, uniform and dense array of Pb NPs at the silica–silicon interface. The results are discussed on the basis of classic thermodynamic concepts