220 research outputs found

    Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations

    Get PDF
    We lack the understanding of why HIV-infected individuals in South Africa progress to AIDS. We hypothesised that in end-stage disease there is a shifting dynamic between T cell imposed immunity and viral immune escape, which, through both compensatory and reverting viral mutations, results in increased viral fitness, elevated plasma viral loads and disease progression. We explored how T cell responses, viral adaptation and viral fitness inter-relate in South African cohorts recruited from Bloemfontein, the Free State (n = 278) and Durban, KwaZulu-Natal (n = 775). Immune responses were measured by Ī³-interferon ELISPOT assays. HLA-associated viral polymorphisms were determined using phylogenetically corrected techniques, and viral replication capacity (VRC) was measured by comparing the growth rate of gag-protease recombinant viruses against recombinant NL4-3 viruses. We report that in advanced disease (CD4 counts <100 cells/Āµl), T cell responses narrow, with a relative decline in Gag-directed responses (p<0.0001). This is associated with preserved selection pressure at specific viral amino acids (e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10 epitope), but with reversion at other sites (e.g., the T186S polymorphism within the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive of ā€œimmune relaxationā€. The median VRC from patients with CD4 counts <100 cells/Āµl was higher than from patients with CD4 counts ā‰„500 cells/Āµl (91.15% versus 85.19%, p = 0.0004), potentially explaining the rise in viral load associated with disease progression. Mutations at HIV Gag T186S and T242N reduced VRC, however, in advanced disease only the T242N mutants demonstrated increasing VRC, and were associated with compensatory mutations (p = 0.013). These data provide novel insights into the mechanisms of HIV disease progression in South Africa. Restoration of fitness correlates with loss of viral control in late disease, with evidence for both preserved and relaxed selection pressure across the HIV genome. Interventions that maintain viral fitness costs could potentially slow progression

    Statistical Resolution of Ambiguous HLA Typing Data

    Get PDF
    High-resolution HLA typing plays a central role in many areas of immunology, such as in identifying immunogenetic risk factors for disease, in studying how the genomes of pathogens evolve in response to immune selection pressures, and also in vaccine design, where identification of HLA-restricted epitopes may be used to guide the selection of vaccine immunogens. Perhaps one of the most immediate applications is in direct medical decisions concerning the matching of stem cell transplant donors to unrelated recipients. However, high-resolution HLA typing is frequently unavailable due to its high cost or the inability to re-type historical data. In this paper, we introduce and evaluate a method for statistical, in silico refinement of ambiguous and/or low-resolution HLA data. Our method, which requires an independent, high-resolution training data set drawn from the same population as the data to be refined, uses linkage disequilibrium in HLA haplotypes as well as four-digit allele frequency data to probabilistically refine HLA typings. Central to our approach is the use of haplotype inference. We introduce new methodology to this area, improving upon the Expectation-Maximization (EM)-based approaches currently used within the HLA community. Our improvements are achieved by using a parsimonious parameterization for haplotype distributions and by smoothing the maximum likelihood (ML) solution. These improvements make it possible to scale the refinement to a larger number of alleles and loci in a more computationally efficient and stable manner. We also show how to augment our method in order to incorporate ethnicity information (as HLA allele distributions vary widely according to race/ethnicity as well as geographic area), and demonstrate the potential utility of this experimentally. A tool based on our approach is freely available for research purposes at http://microsoft.com/science

    Factors Associated With Viral Rebound in HIV-1-Infected Individuals Enrolled in a Therapeutic HIV-1 \u3ci\u3egag\u3c/i\u3e Vaccine Trial

    Get PDF
    Background. Human immunodeficiency virus type 1 (HIV-1) vaccines directed to the cell-mediated immune system could have a role in lowering the plasma HIV-1 RNA set point, which may reduce infectivity and delay disease progression. Methods. Randomized, placebo-controlled trial involving HIV-1-infected participants who received a recombinant adenovirus serotype 5 (rAd5) HIV-1 gag vaccine or placebo. Sequence-based HLA typing was performed for all 110 participants who initiated analytic treatment interruption (ATI) to assess the role of HLA types previously associated with HIV prognosis. Plasma HIV-1 gag and pol RNA sequences were obtained during the ATI. Virologic endpoints and HLA groups were compared between treatment arms using the 2-sample rank sum test. A linear regression model was fitted to derive independent correlates of ATI week 16 plasma viral load (w16 PVL). Results. Vaccinated participants with neutral HLA alleles had lower median w16 PVLs than did vaccinated participants with protective HLA alleles (P 5 .01) or placebo participants with neutral HLA alleles (P 5 .02). Factors independently associated with lower w16 PVL included lower pre-antiretroviral therapy PVL, greater Gag sequence divergence from the vaccine sequence, decreased proportion of HLA-associated polymorphisms in Gag, and randomization to the vaccine arm. Conclusions. Therapeutic vaccination with a rAd5-HIV gag vaccine was associated with lower ATI week 16 PVL even after controlling for viral and host genetic factors

    Factors Associated With Viral Rebound in HIV-1-Infected Individuals Enrolled in a Therapeutic HIV-1 \u3ci\u3egag\u3c/i\u3e Vaccine Trial

    Get PDF
    Background. Human immunodeficiency virus type 1 (HIV-1) vaccines directed to the cell-mediated immune system could have a role in lowering the plasma HIV-1 RNA set point, which may reduce infectivity and delay disease progression. Methods. Randomized, placebo-controlled trial involving HIV-1-infected participants who received a recombinant adenovirus serotype 5 (rAd5) HIV-1 gag vaccine or placebo. Sequence-based HLA typing was performed for all 110 participants who initiated analytic treatment interruption (ATI) to assess the role of HLA types previously associated with HIV prognosis. Plasma HIV-1 gag and pol RNA sequences were obtained during the ATI. Virologic endpoints and HLA groups were compared between treatment arms using the 2-sample rank sum test. A linear regression model was fitted to derive independent correlates of ATI week 16 plasma viral load (w16 PVL). Results. Vaccinated participants with neutral HLA alleles had lower median w16 PVLs than did vaccinated participants with protective HLA alleles (P 5 .01) or placebo participants with neutral HLA alleles (P 5 .02). Factors independently associated with lower w16 PVL included lower pre-antiretroviral therapy PVL, greater Gag sequence divergence from the vaccine sequence, decreased proportion of HLA-associated polymorphisms in Gag, and randomization to the vaccine arm. Conclusions. Therapeutic vaccination with a rAd5-HIV gag vaccine was associated with lower ATI week 16 PVL even after controlling for viral and host genetic factors

    Characteristics and Outcomes of Initial Virologic Suppressors during Analytic Treatment Interruption in a Therapeutic HIV-1 gag Vaccine Trial

    Get PDF
    Background: In the placebo-controlled trial ACTG A5197, a trend favoring viral suppression was seen in the HIV-1-infected subjects who received a recombinant Ad5 HIV-1 gaggag vaccine. Objective: To identify individuals with initial viral suppression (plasma HIV-1 RNA set point <3.0 log10log_{10} copies/ml) during the analytic treatment interruption (ATI) and evaluate the durability and correlates of virologic control and characteristics of HIV sequence evolution. Methods: HIV-1 gaggag and polpol RNA were amplified and sequenced from plasma obtained during the ATI. Immune responses were measured by flow cytometric analysis and intracellular cytokine expression assays. Characteristics of those with and without initial viral suppression were compared using the Wilcoxon rank sum and Fisher's exact tests. Results: Eleven out of 104 participants (10.6%) were classified as initial virologic suppressors, nine of whom had received the vaccine. Initial virologic suppressors had significantly less CD4+ cell decline by ATI week 16 as compared to non-suppressors (median 7 CD4+ cell gain vs. 247 CD4+ cell loss, P = 0.04). However, of the ten initial virologic suppressors with a pVL at ATI week 49, only three maintained pVL <3.0 log10 copies/ml. HIV-1 Gag-specific CD4+ interferon-Ī³ responses were not associated with initial virologic suppression and no evidence of vaccine-driven HIV sequence evolution was detected. Participants with initial virologic suppression were found to have a lower percentage of CD4+ CTLA-4+ cells prior to treatment interruption, but a greater proportion of HIV-1 Gag-reactive CD4+ TNF-Ī±+ cells expressing either CTLA-4 or PD-1. Conclusions: Among individuals participating in a rAd5 therapeutic HIV-1 gaggag vaccine trial, initial viral suppression was found in a subset of patients, but this response was not sustained. The association between CTLA-4 and PD-1 expression on CD4+ T cells and virologic outcome warrants further study in trials of other therapeutic vaccines in development. Trial Registration: ClinicalTrials.gov NCT0008010

    HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity

    Get PDF
    BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (pā€‰=ā€‰0.28) or rate of CD4+ T cell decline (pā€‰=ā€‰0.45). CD4 down-regulation (pā€‰=ā€‰0.02) and SERINC5 down-regulation (pā€‰=ā€‰0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (pā€‰=ā€‰0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics

    Unique Features of HLA-Mediated HIV Evolution in a Mexican Cohort: A Comparative Study

    Get PDF
    Background: Mounting evidence indicates that HLA-mediated HIV evolution follows highlystereotypic pathways that result in HLA-associated footprints in HIV at the population level.However, it is not known whether characteristic HLA frequency distributions in differentpopulations have resulted in additional unique footprints. Methods: The phylogenetic dependency network model was applied to assess HLA-mediatedevolution in datasets of HIV pol sequences from free plasma viruses and peripheral bloodmononuclear cell (PBMC)-integrated proviruses in an immunogenetically unique cohort of Mexicanindividuals. Our data were compared with data from the IHAC cohort, a large multi-center cohortof individuals from Canada, Australia and the USA.Results: Forty three different HLA-HIV codon associations representing 30 HLA-HIV codon pairswere observed in the Mexican cohort (q &lt; 0.2). Strikingly, 23 (53%) of these associations differedfrom those observed in the well-powered IHAC cohort, strongly suggesting the existence of uniquecharacteristics in HLA-mediated HIV evolution in the Mexican cohort. Furthermore, 17 of the 23novel associations involved HLA alleles whose frequencies were not significantly different fromthose in IHAC, suggesting that their detection was not due to increased statistical power but todifferences in patterns of epitope targeting. Interestingly, the consensus differed in four positionsbetween the two cohorts and three of these positions could be explained by HLA-associated selection. Additionally, different HLA-HIV codon associations were seen when comparing HLAmediatedselection in plasma viruses and PBMC archived proviruses at the population level, with asignificantly lower number of associations in the proviral dataset. Conclusion: Our data support universal HLA-mediated HIV evolution at the population level,resulting in detectable HLA-associated footprints in the circulating virus. However, it also stronglysuggests that unique genetic backgrounds in different HIV-infected populations may influence HIVevolution in a particular direction as particular HLA-HIV codon associations are determined byspecific HLA frequency distributions. Our analysis also suggests a dynamic HLA-associatedevolution in HIV with fewer HLA-HIV codon associations observed in the proviral compartment,which is likely enriched in early archived HIV sequences, compared to the plasma viruscompartment. These results highlight the importance of comparative HIV evolutionary studies inimmunologically different populations worldwide
    • ā€¦
    corecore