203 research outputs found

    X-ray Absorption Fine Structure in Embedded Atoms

    Full text link
    Oscillatory structure is found in the atomic background absorption in x-ray-absorption fine structure (XAFS). This atomic-XAFS or AXAFS arises from scattering within an embedded atom, and is analogous to the Ramsauer-Townsend effect. Calculations and measurements confirm the existence of AXAFS and show that it can dominate contributions such as multi-electron excitations. The structure is sensitive to chemical effects and thus provides a new probe of bonding and exchange effects on the scattering potential.Comment: 4 pages plus 2 postscript figures, REVTEX 3.

    Pd/Cu Site Interchange and Non-Fermi-Liquid Behavior in UCu_4Pd

    Full text link
    X-ray-absorption fine-structure measurements of the local structure in UCu_4Pd are described which indicate a probable lattice-disorder origin for non-Fermi-liquid behavior in this material. Short Pd-Cu distances are observed, consistent with 24 +/- 3% of the Pd atoms occupying nominally Cu sites. A "Kondo disorder" model, based on the effect on the local Kondo temperature T_K of this interchange and some additional bond-length disorder, agrees quantitatively with previous experimental susceptibility data, and therefore also with specific heat and magnetic resonance experiments.Comment: 4 pages, 3 PostScript figures, to be published in PR

    Local lattice disorder in the geometrically-frustrated spin glass pyrochlore Y2Mo2O7

    Full text link
    The geometrically-frustrated spin glass Y2Mo2O7 has been considered widely to be crystallographically ordered with a unique nearest neighbor magnetic exchange interaction, J. To test this assertion, we present x-ray-absorption fine-structure results for the Mo and Y K edges as a function of temperature and compare them to results from a well-ordered pyrochlore, Tl2Mn2O7. We find that the Mo-Mo pair distances are significantly disordered at approximately right angles to the Y-Mo pairs. These results strongly suggest that lattice disorder nucleates the spin-glass phase in this material.Comment: 9 pages, 2 Postscript figures, Phys. Rev. B: Rapid, in pres

    Effect of [OH-] linkages on luminescent properties of ZnO nanoparticles

    Full text link
    Optical properties of ZnO nanoparticles prepared from a simple chemical method using sodium zincate bath show strong white light emission. X-ray absorption fine structure studies reveal a completely different local environment around Zn in these ZnO nanoparticles. The observed luminescence properties and local structural changes have been explained on the basis of a linkage between Zn and OH- ions in the surface layers of ZnO nanoparticles.Comment: J. Phys. Chem. C. (2011) (in print

    Local structure study about Co in YBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin films using polarized XAFS

    Full text link
    We have studied the local structure around Co in YBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin films with three different concentrations: x=0.07, 0.10, 0.17, and in a PrBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin film of concentration x=0.05 using the X-ray Absorption Fine Structure (XAFS) technique. Data were collected at the Co KK-edge with polarizations both parallel and perpendicular to the film surface. We find that the oxygen neighbors are well ordered and shortened in comparison with YBCO Cu-O values to 1.80 \AA{} and 1.87 \AA{} in the cc-axis and abab-plane, respectively. A comparison of further neighbors in the thin film and powder data show that these peaks in the film are suppressed in amplitude relative to the powder samples, which suggests there is more disorder and/or distortions of the Co environment present in the thin films.Comment: 14 pages; To be submitted to Phys. Rev.

    Spectroscopic and computational insights on catalytic synergy in bimetallic aluminophosphate catalysts

    No full text
    A combined electronic structure computational and X-ray absorption spectroscopy study was used to investigate the nature of the active sites responsible for catalytic synergy in Co-Ti bimetallic nanoporous frameworks. Probing the nature of the molecular species at the atomic level has led to the identification of a unique Co-O-Ti bond, which serves as the loci for the superior performance of the bimetallic catalyst, when compared with its analogous monometallic counterpart. The structural and spectroscopic features associated with this active site have been characterized and contrasted, with a view to affording structure property relationships, in the wider context of designing sustainable catalytic oxidations with porous solids
    corecore