123 research outputs found

    Facilitated diffusion buffers noise in gene expression.

    Get PDF
    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.The following article has been published by Physical Review E. It can be found at: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.032701. Copyright 2014 American Physical Society

    The Influence of Transcription Factor Competition on the Relationship between Occupancy and Affinity

    Get PDF
    Transcription factors (TFs) are proteins that bind to specific sites on the DNA and regulate gene activity. Identifying where TF molecules bind and how much time they spend on their target sites is key to understanding transcriptional regulation. It is usually assumed that the free energy of binding of a TF to the DNA (the affinity of the site) is highly correlated to the amount of time the TF remains bound (the occupancy of the site). However, knowing the binding energy is not sufficient to infer actual binding site occupancy. This mismatch between the occupancy predicted by the affinity and the observed occupancy may be caused by various factors, such as TF abundance, competition between TFs or the arrangement of the sites on the DNA. We investigated the relationship between the affinity of a TF for a set of binding sites and their occupancy. In particular, we considered the case of the transcription factor lac repressor (lacI) in E.coli, and performed stochastic simulations of the TF dynamics on the DNA for various combinations of lacI abundance and competing TFs that contribute to macromolecular crowding. We also investigated the relationship of site occupancy and the information content of position weight matrices (PWMs) used to represent binding sites. Our results showed that for medium and high affinity sites, TF competition does not play a significant role for genomic occupancy except in cases when the abundance of the TF is significantly increased, or when the PWM displays relatively low information content. Nevertheless, for medium and low affinity sites, an increase in TF abundance (for both cognate and non-cognate molecules) leads to an increase in occupancy at several sites. © 2013 Zabet et al

    DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts

    Get PDF
    DNA methylation has been associated with transcriptional repression and detection of differential methylation is important in understanding the underlying causes of differential gene expression. Bisulfite-converted genomic DNA sequencing is the current gold standard in the field for building genome-wide maps at a base pair resolution of DNA methylation. Here we systematically investigate the underlying features of detecting differential DNA methylation in CpG and non-CpG contexts, considering both the case of mammalian systems and plants. In particular, we introduce DMRcaller, a highly efficient R/Bioconductor package, which implements several methods to detect Differentially Methylated Regions (DMRs) between two samples. Most importantly, we show that different algorithms are required to compute DMRs and the most appropriate algorithm in each case depends on the sequence context and levels of methylation. Furthermore, we show that DMRcaller outperforms other available packages and we propose a new method to select the parameters for this tool and for other available tools. DMRcaller is a comprehensive tool for differential methylation analysis which displays high sensitivity and specificity for the detection of DMRs and performs entire genome wide analysis within a few hours

    In silico evolution of diauxic growth

    Get PDF
    The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression

    NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data

    Get PDF
    Background: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed
    • …
    corecore