4 research outputs found

    SPACA9 is a lumenal protein of human ciliary singlet and doublet microtubules

    Get PDF
    The cilium-centrosome complex contains triplet, doublet, and singlet microtubules. The lumenal surfaces of each microtubule within this diverse array are decorated by microtubule inner proteins (MIPs). Here, we used single-particle cryo-electron microscopy methods to build atomic models of two types of human ciliary microtubule: the doublet microtubules of multiciliated respiratory cells and the distal singlet microtubules of monoflagellated human spermatozoa. We discover that SPACA9 is a polyspecific MIP capable of binding both microtubule types. SPACA9 forms intralumenal striations in the B tubule of respiratory doublet microtubules and noncontinuous spirals in sperm singlet microtubules. By acquiring new and reanalyzing previous cryo-electron tomography data, we show that SPACA9-like intralumenal striations are common features of different microtubule types in animal cilia. Our structures provide detailed references to help rationalize ciliopathy-causing mutations and position cryo-EM as a tool for the analysis of samples obtained directly from ciliopathy patients

    Exosomes purified from a single cell type have diverse morphology

    No full text
    Extracellular vesicles (EVs) are produced by all known organisms and are important for cell communication and physiology. Great morphological diversity has been described regarding EVs found in body fluids such as blood plasma, breast milk, and ejaculate. However, a detailed morphological analysis has never been performed on exosomes when purified from a single cell type. In this study we analysed and quantified, via multiple electron microscopy techniques, the morphology of exosomes purified from the human mast cell line HMC-1. The results revealed a wide diversity in exosome morphology, suggesting that subpopulations of exosomes with different and specific functions may exist. Our findings imply that a new, more efficient way of defining exosome subpopulations is necessary. A system was proposed where exosomes were classified into nine different categories according to their size and shape. Three additional morphological features were also found in exosomes regardless of their morphological classification. These findings show that exosomes purified from a single cell line are also morphologically diverse, similar to previous observations for EVs in body fluids. This knowledge can help to improve the interpretation of experimental results and widen our general understanding of the biological functions of exosomes
    corecore