17 research outputs found

    Dendritic cells internalize staphylococcus aureus more efficiently than staphylococcus epidermidis, but do not differ in induction of antigen-specific t cell proliferation

    Get PDF
    Staphylococcus aureus and Staphylococcus epidermidis are related species which can cause predominantly acute and subacute infections, respectively. Differences in human adaptive immune responses to these two species are not well understood. Dendritic cells (DCs) have an important role in the control and regulation of anti-staphylococcal T cell responses. Therefore, we aimed to compare the ability of S. aureus and S. epidermidis to influence the essential steps in human DC activation and subsequent antigen-specific CD4+ T cell proliferation, and to investigate the underlying mechanisms. Using multiple strains of both species, we observed that S. aureus was internalized more effectively than S. epidermidis by DCs but that both species were equally potent in activating these host cells, as evidenced by similar induction of DC maturation marker expression and antigen loading onto MHC-II molecules. The DCs stimulated by S. aureus strains not harboring superantigen (SAg) genes or by any of the S. epidermidis strains, induced low, likely physiological levels of T cell proliferation. Only DCs stimulated with S. aureus strains harboring SAg genes induced high levels of T cell proliferation. Taken together, S. aureus and S. epidermidis do not differently affect DC activation and ensuing antigen-specific T cell proliferation, unless a strain has the capacity to produce SAgs

    Genetically modified lactococcus lactis for delivery of human interleukin-10 to dendritic cells

    Get PDF
    Interleukin-10 (IL-10) plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs) to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.lacti s IL-10) on DC function in vitro. Monocyte-derived DC incubated with L.lacti s IL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.lacti s IL-10 -derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.lacti s IL-10 -derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases

    Medical-grade honey does not reduce skin colonization at central venous catheter-insertion sites of critically ill patients: A randomized controlled trial

    Get PDF
    Introduction: Catheter-related bloodstream infections (CRBSIs) associated with short-term central venous catheters (CVCs) in intensive care unit (ICU) patients are a major clinical problem. Bacterial colonization of the skin at the CVC insertion site is an important etiologic factor for CRBSI. The aim of this study was to assess the efficacy of medical-grade honey in reducing bacterial skin colonization at insertion sites.Methods: A prospective, single-center, open-label randomized controlled trial was performed at the ICU of a university hospital in The Netherlands to assess the efficacy of medical-grade honey to reduce skin colonization of insertion sites. Medical-grade honey was applied in addition to standard CVC-site dressing and disinfection with 0.5% chlorhexidine in 70% alcohol. Skin colonization was assessed on a daily basis before CVC-site disinfection. The primary end point was colonization of insertion sites with >100 colony-forming units at the last sampling before removal of the CVC or transfer of the patient from the ICU. Secondary end points were quantitative levels of colonization of the insertion sites and colonization of insertion sites stratified for CVC location.Results: Colonization of insertion sites was not affected by the use of medical-grade honey, as 44 (34%) of 129 and 36 (34%) of 106 patients in the honey and standard care groups, respectively, had a positive skin culture (P = 0.98). Median levels of skin colonization at the last sampling were 1 (0 to 2.84) and 1 (0 to 2.70) log colony-forming units (CFUs)/swab for the honey and control groups, respectively (P = 0.94). Gender, days of CVC placement, CVC location, and CVC type were predictive for a positive skin culture. Correction for these variables did not change the effect of honey on skin-culture positivity.Conclusions: Medical-grade honey does not affect colonization of the skin at CVC insertion sites in ICU patients when applied in addition to standard disinfection with 0.5% chlorhexidine in 70% alcohol.Trial registration: Netherlands Trial Registry, NTR1652

    Molecular signals in the early Rhizobium-legume interaction

    No full text

    Fresh versus frozen embryo transfers in assisted reproduction

    No full text
    BACKGROUND: In vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatments conventionally consist of a fresh embryo transfer, possibly followed by one or more cryopreserved embryo transfers in subsequent cycles. An alternative option is to freeze all suitable embryos and transfer cryopreserved embryos in subsequent cycles only, which is known as the 'freeze all' strategy. This is the first update of the Cochrane Review on this comparison. OBJECTIVES: To evaluate the effectiveness and safety of the freeze all strategy compared to the conventional IVF/ICSI strategy in women undergoing assisted reproductive technology. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two registers of ongoing trials from inception until 23 September 2020 for relevant studies, checked references of publications found, and contacted study authors to obtain additional data. SELECTION CRITERIA: Two review authors (TZ and MZ) independently selected studies for inclusion, assessed risk of bias, and extracted study data. We included randomised controlled trials comparing a 'freeze all' strategy with a conventional IVF/ICSI strategy including a fresh embryo transfer in women undergoing IVF or ICSI treatment. DATA COLLECTION AND ANALYSIS: The primary outcomes were cumulative live birth rate and ovarian hyperstimulation syndrome (OHSS). Secondary outcomes included effectiveness outcomes (including ongoing pregnancy rate and clinical pregnancy rate), time to pregnancy and obstetric, perinatal and neonatal outcomes. MAIN RESULTS: We included 15 studies in the systematic review and eight studies with a total of 4712 women in the meta-analysis. The overall evidence was of moderate to low quality. We graded all the outcomes and downgraded due to serious risk of bias, serious imprecision and serious unexplained heterogeneity. Risk of bias was associated with unclear blinding of investigators for preliminary outcomes of the study during the interim analysis, unit of analysis error, and absence of adequate study termination rules. There was an absence of high-quality evidence according to GRADE assessments for our primary outcomes, which is reflected in the cautious language below. There is probably little or no difference in cumulative live birth rate between the 'freeze all' strategy and the conventional IVF/ICSI strategy (odds ratio (OR) 1.08, 95% CI 0.95 to 1.22; I2 = 0%; 8 RCTs, 4712 women; moderate-quality evidence). This suggests that for a cumulative live birth rate of 58% following the conventional strategy, the cumulative live birth rate following the 'freeze all' strategy would be between 57% and 63%. Women might develop less OHSS after the 'freeze all' strategy compared to the conventional IVF/ICSI strategy (OR 0.26, 95% CI 0.17 to 0.39; I2 = 0%; 6 RCTs, 4478 women; low-quality evidence). These data suggest that for an OHSS rate of 3% following the conventional strategy, the rate following the 'freeze all' strategy would be 1%. There is probably little or no difference between the two strategies in the cumulative ongoing pregnancy rate (OR 0.95, 95% CI 0.75 to 1.19; I2 = 31%; 4 RCTs, 1245 women; moderate-quality evidence).  We could not analyse time to pregnancy; by design, time to pregnancy is shorter in the conventional strategy than in the 'freeze all' strategy when the cumulative live birth rate is comparable, as embryo transfer is delayed in a 'freeze all' strategy. We are uncertain whether the two strategies differ in cumulative miscarriage rate because the evidence is very low quality (Peto OR 1.06, 95% CI 0.72 to 1.55; I2 = 55%; 2 RCTs, 986 women; very low-quality evidence) and cumulative multiple-pregnancy rate (Peto OR 0.88, 95% CI 0.61 to 1.25; I2 = 63%; 2 RCTs, 986 women; very low-quality evidence). The risk of hypertensive disorders of pregnancy (Peto OR 2.15, 95% CI 1.42 to 3.25; I2 = 29%; 3 RCTs, 3940 women; low-quality evidence), having a large-for-gestational-age baby (Peto OR 1.96, 95% CI 1.51 to 2.55; I2 = 0%; 3 RCTs, 3940 women; low-quality evidence) and a higher birth weight of the children born (mean difference (MD) 127 g, 95% CI 77.1 to 177.8; I2 = 0%; 5 RCTs, 1607 singletons; moderate-quality evidence) may be increased following the 'freeze all' strategy. We are uncertain whether the two strategies differ in the risk of having a small-for-gestational-age baby because the evidence is low quality (Peto OR 0.82, 95% CI 0.65 to 1.05; I2 = 64%; 3 RCTs, 3940 women; low-quality evidence). AUTHORS' CONCLUSIONS: We found moderate-quality evidence showing that one strategy is probably not superior to the other in terms of cumulative live birth rate and ongoing pregnancy rate. The risk of OHSS may be decreased in the 'freeze all' strategy. Based on the results of the included studies, we could not analyse time to pregnancy. It is likely to be shorter using a conventional IVF/ICSI strategy with fresh embryo transfer in the case of similar cumulative live birth rate, as embryo transfer is delayed in a 'freeze all' strategy. The risk of maternal hypertensive disorders of pregnancy, of having a large-for-gestational-age baby and a higher birth weight of the children born may be increased following the 'freeze all' strategy. We are uncertain if 'freeze all' strategy reduces the risk of miscarriage, multiple pregnancy rate or having a small-for-gestational-age baby compared to conventional IVF/ICSI

    Serum IgA Immune Complexes Promote Proinflammatory Cytokine Production by Human Macrophages, Monocytes, and Kupffer Cells through FcαRI-TLR Cross-Talk

    No full text
    IgA is predominantly recognized to play an important role in host defense at mucosal sites, where it prevents invasion of pathogens by neutralization. Although it has recently become clear that IgA also mediates other immunological processes, little remains known about the potential of IgA to actively contribute to induction of inflammation, particularly in nonmucosal organs and tissues. In this article, we provide evidence that immune complex formation of serum IgA plays an important role in orchestration of inflammation in response to pathogens at various nonmucosal sites by eliciting proinflammatory cytokines by human macrophages, monocytes, and Kupffer cells. We show that opsonization of bacteria with serum IgA induced cross-talk between FcαRI and different TLRs, leading to cell type-specific amplification of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IL-23. Furthermore, we demonstrate that the increased protein production of cytokines was regulated at the level of gene transcription, which was dependent on activation of kinases Syk and PI3K. Taken together, these data demonstrate that the immunological function of IgA is substantially more extensive than previously considered and suggest that serum IgA-induced inflammation plays an important role in orchestrating host defense by different cell types in nonmucosal tissues, including the liver, skin, and peripheral bloo

    In vitro methods for the evaluation of antimicrobial surface designs.

    Get PDF
    Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for antimicrobial biomaterials and coatings. The term "antimicrobial" can encompass different mechanisms of action (here termed "antimicrobial surface designs"), such as antimicrobial-releasing, contact-killing or non-adhesivity. Biomaterials equipped with antimicrobial surface designs based on different mechanisms of action require different in vitro evaluation methods. Available industrial standard evaluation tests do not address the specific mechanisms of different antimicrobial surface designs and have therefore been modified over the past years, adding to the myriad of methods available in the literature to evaluate antimicrobial surface designs. The aim of this review is to categorize fourteen presently available methods including industrial standard tests for the in vitro evaluation of antimicrobial surface designs according to their suitability with respect to their antimicrobial mechanism of action. There is no single method or industrial test that allows to distinguish antimicrobial designs according to all three mechanisms identified here. However, critical consideration of each method clearly relates the different methods to a specific mechanism of antimicrobial action. It is anticipated that use of the provided table with the fourteen methods will avoid the use of wrong methods for evaluating new antimicrobial designs and therewith facilitate translation of novel antimicrobial biomaterials and coatings to clinical use. The need for more and better updated industrial standard tests is emphasized.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

    Get PDF
    textabstractAdditively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article “Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus” (van Hengel et al., 2017) [1]

    IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and Fc gamma RIIa in human dendritic cells

    No full text
    Dendritic cells (DCs) are essential in inducing adaptive immune responses against bacteria by expressing cytokines that skew T-cell responses toward protective Th17 cells. Although it is widely recognized that induction of these cytokines by DCs involves activation of multiple receptors, it is still incompletely characterized which combination of receptors specifically skews Th17-cell responses. Here we have identified a novel role for Fc gamma RIIa in promoting human Th17 cells. Activation of DCs by bacteria opsonized by serum IgG strongly promoted Th17 responses, which was Fc gamma RIIa-dependent and coincided with enhanced production of selected cytokines by DCs, including Th17-promoting IL-1 beta and IL-23. Notably, Fc gamma RIIa stimulation on DCs did not induce cytokine production when stimulated individually, but selectively amplified cytokine responses through synergy with TLR2, 4, or 5. Importantly, this synergy is mediated at 2 different levels. First, TLR-Fc gamma RIIa costimulation strongly increased transcription of pro-IL-1 beta and IL-23p19. Second, Fc gamma RIIa triggering induced activation of caspase-1, which cleaves pro-IL-1 beta into its bioactive form and thereby enhanced IL-1 beta secretion. Taken together, these data identified cross-talk between TLRs and Fc gamma RIIa as a novel mechanism by which DCs promote protective effector Th17-cell responses against bacteria. (Blood. 2012;120(1):112-121
    corecore