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Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major
cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for
antimicrobial biomaterials and coatings. The term ‘‘antimicrobial” can encompass different mechanisms
of action (here termed ‘‘antimicrobial surface designs”), such as antimicrobial-releasing, contact-killing or
non-adhesivity. Biomaterials equipped with antimicrobial surface designs based on different mecha-
nisms of action require different in vitro evaluation methods. Available industrial standard evaluation
tests do not address the specific mechanisms of different antimicrobial surface designs and have there-
fore been modified over the past years, adding to the myriad of methods available in the literature to
evaluate antimicrobial surface designs. The aim of this review is to categorize fourteen presently avail-
able methods including industrial standard tests for the in vitro evaluation of antimicrobial surface
designs according to their suitability with respect to their antimicrobial mechanism of action. There is
no single method or industrial test that allows to distinguish antimicrobial designs according to all three
mechanisms identified here. However, critical consideration of each method clearly relates the different
methods to a specific mechanism of antimicrobial action. It is anticipated that use of the provided table
with the fourteen methods will avoid the use of wrong methods for evaluating new antimicrobial designs
and therewith facilitate translation of novel antimicrobial biomaterials and coatings to clinical use. The
need for more and better updated industrial standard tests is emphasized.

Statement of Significance

European COST-action TD1305, IPROMEDAI aims to provide better understanding of mechanisms of
antimicrobial surface designs of biomaterial implants and devices. Current industrial evaluation standard
tests do not sufficiently account for different, advanced antimicrobial surface designs, yet are urgently
needed to obtain convincing in vitro data for approval of animal experiments and clinical trials. This
review aims to provide an innovative and clear guide to choose appropriate evaluation methods for three
distinctly different mechanisms of antimicrobial design: (1) antimicrobial-releasing, (2) contact-killing
and (3) non-adhesivity. Use of antimicrobial evaluation methods and definition of industrial standard
tests, tailored toward the antimicrobial mechanism of the design, as identified here, fulfill a missing link
in the translation of novel antimicrobial surface designs to clinical use.

� 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Bacterial adhesion and subsequent biofilm formation on
biomedical implants and devices are the main cause of their failure
[1]. The incidence rates of biomaterial-associated infection (BAI)
depend on the application considered, i.e. for urinary catheters
the risk of acquiring an infection rises with 3–7% per day [2,3], cen-
tral venous catheters (CVC) infections occur 2–4 times per 1000
CVC days [4,5], vascular prosthesis infection rates are between
0.5 and 5% [6], aortic endografts (stents) 0.2–0.7% [7], total hip
and knee arthroplasties have infection rates from 1% in primary
replacements to 5% in revision surgery [8], while being higher for
plates and screws in trauma patients [9] and infections rates for
abdominal wall meshes range between 1% and 2% [10]. BAI is dif-
ficult to treat with antibiotics since bacteria are on the one hand
protected by their biofilm mode of growth and on the other hand
not effectively targeted by a compromised host immune system
at the site of the implanted biomaterial or device [11–13]. Dental
implants, though placed in an unsterile environment, have a rela-
tively low infection rate of around 1% [14], suggested to be due
to adaptation of the immune system to the presence of bacteria
and biomaterials. BAI often requires surgical replacement of the
implant or device, typically accompanied by great discomfort to
the patient, loss of quality of life, and high treatment costs [15].
Not seldom, the difficulties associated with the proper diagnosis
of BAI lead to severe morbidity and mortality [16]. For instance,
cases with low-grade BAI can easily be misdiagnosed as a touch
of the flu, with fatal consequences for patients [17].

BAI develops frequently through transfer of commensal bacteria
from the skin to an implant or device surface during surgery
(‘‘early per-operative contamination”) or hospitalization prior to
complete wound closure (‘‘late per-operative contamination”)
[18]. Apart from the per-operative route, bacteria can reach the
biomaterial surface through hematogenous spreading from infec-
tions elsewhere in the body [19]. Importantly, bacteria may survive
in surrounding tissue even after revision surgery, posing novel
requirements to treatment strategies [20]. Because therapeutic
measures to control BAI often fail and have severe consequences
to the patient, emphasis has shifted to prevention of BAI by design-
ing novel antimicrobial biomaterials or coatings for implants and
devices [21].

The term ‘‘antimicrobial” is rather loosely used in the current
literature encompassing different mechanisms of action that, in
one way or another, may contribute to the prevention of BAI. Three
distinctly different mechanisms of antimicrobial action can be dis-
tinguished based on (1) surfaces that release antimicrobials, (2)
surfaces that kill adhering bacteria directly upon adhesion without
release of antimicrobials (contact-killing) (3) surfaces that are non-
adhesive towards bacteria (non-adhesivity). (Note that we care-
fully avoid the more general term ‘‘antifouling”, because it is highly
non-specific. ‘‘Fouling” refers to any unwanted deposition of mate-
rial onto a surface, ranging from microorganisms on biomaterials
implants and devices to barnacles and mussels in a marine envi-
ronment, while ‘‘anti” encompasses all possible mechanisms that
prevent or reduce fouling.) Local release of antimicrobials, like gen-
tamicin and amoxicillin, from biomaterial beads or coatings has
been applied in cardiovascular stents, surgical meshes, urinary
catheters, orthopedic implants, or trauma devices [22–24]. In addi-
tion, antiseptics like chlorhexidine and silver sulfadiazine have
been used in drug-releasing central venous catheters [25,26].
Antimicrobial-releasing coatings may be depleted when
antimicrobial-release is most needed, while as a second drawback
sustained low-level tail-release will contribute to the development
of antibiotic-resistance [27]. Therefore contact-killing [28–33] and
non-adhesive [34,35] surfaces are considered advantageous for
long-term antimicrobial activity. Long-term efficacy of contact–
killing surfaces, however, has been questioned because of a poten-
tial coverage of the surface by adsorbed proteins from blood, serum
or other body fluids or development of a layer of dead bacteria
[36]. Yet, efficacy of contact-killing quaternary ammonium-
coated surfaces has been demonstrated over a time period of sev-
eral days in rats [37] and up to a month in sheep [38]. Herewith
contact-killing and non-adhesive surfaces bear promise in applica-
tions where hematogenous spreading of bacteria forms a long-
term threat as for joint replacements [17], pace-makers or intra-
venous catheters which are under continuous risk of colonization
by cutaneous or subcutaneous bacteria [44,45]. Surfaces that are
non-adhesive to bacteria however, are often also non-adhesive to
tissue cells, making them less suitable for biomaterial implants
and devices requiring tissue integration. Addition of RGD-
peptides to a non-adhesive polymer-brush, however, enhanced tis-
sue cell attachment without affecting non-adhesiveness towards
Staphylococcus aureus [39,40]. Thus recent advances go beyond
the level of a single mechanism of antimicrobial action and com-
prise dual- or multi-functional antimicrobial coatings combining
advantages of both releasing, non-adhesiveness and/or contact-
killing designs with features to improve in tissue integration
[39]. Also nanotechnology-based antimicrobial strategies are
rapidly emerging [41–43], but these too can be classified as work-
ing according to either of the three mechanisms of action distin-
guished in this paper or combinations thereof.

Many experimental antimicrobial surface designs for biomateri-
als or coatings reported in the literature never get translated to clin-
ical use, mainly because industry requires simple, robust and cheap
manufacturing processes for antimicrobial surface designs while
regulatory agencies require costly, often statistically impossible,



Table 1
Industrial standard evaluation tests of antimicrobial surface designs and their possible relation with the different methods distinguished in Fig. 1, together with their intended
application. (AATCC: American Association of Textile Chemists and Colorists, ASTM: American Society for Testing and Materials, EN: European Standard, ISO: International
Standard Organisation, JIS: Japanese Industrial Standard, SN: Schweizerische Normen Vereinigung).

Standard Application area

AATCC 30
Antifungal Activity, Assessment on Textile Materials

Textiles/Fabrics

AATCC 90
Antibacterial Activity, Assessment of Textile Materials

Textiles/Fabrics

AATCC 100
Assessment of Antibacterial Finishes on Textile Materials

Textiles/Fabrics

AATCC 147
Antibacterial Activity Assessment of Textile Materials

Textiles/Fabrics

ASTM E2149
Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions

Textiles/Fabrics

ASTM E2180-07
Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials

Non-porous materials

ASTM E2722
Standard Test Method for Using Seeded-Agar for the Screening Assessment of Antimicrobial Activity in Fabric and Air Filter Media

Textiles/Fabrics

EN 1104
Paper and Board Intended to come into Contact With Foodstuffs – Determination of the Transfer of Antimicrobial Constituents

Paper and board

ISO 16869
Assessment of the Effectiveness of Fungistatic Compounds in Plastics Formulations

Plastics

ISO 20645
Textile fabrics – Determination of Antibacterial Activity

Textiles/Fabrics

ISO 20743
Textiles-Determination of Antibacterial Activity of Antibacterial Finished Products

Textiles/Fabrics

ISO 22196
Plastics – Measurement of Antibacterial Activity on Plastics Surfaces

Non-porous materials

JIS L 1902
Testing for Antibacterial Activity and Efficacy on Textile Products

Textiles/Fabrics

JIS Z 2801
Antimicrobial Products-Test for Antimicrobial Activity and Efficacy

Non-porous materials

SN 195920
Textile Fabrics – Determination of the Antibacterial Activity

Textiles/Fabrics

SN 195924
Textile Fabrics; Determination of the Antibacterial Activity

Textiles/Fabrics
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large clinical trials before allowing market introduction [17]. In
addition, it becomes harder and harder to obtain approval for ani-
mal studies and in most countries approval for animal experiments
is subject to convincing in vitro evidence of efficacy. This puts
emphasis on the design of proper in vitro evaluation methods for
antimicrobial surface designs, tailored towards specific mecha-
nisms of action [44]. Available industrial standard evaluation tests
(see Table 1) are mostly intended to assess the antimicrobial
efficacy of non-medical products, such as chemical disinfectants
and antiseptics for food and domestic appliances (European Stan-
dard, EN 13697), antibacterial plastics (International Organization
for Standardization, ISO 22196) or for textiles with improved
hygiene, odor control and protection from microbial attack and
products for disinfection [45–47]. Industrial standard evaluation
tests often do not consider differences in antimicrobial mechanism
of a design. Accordingly, many industrial standard tests have been
modified over the past years, adding to the myriad of methods
available in the literature to evaluate antimicrobial biomaterials
or coatings. The aim of this review is to categorize fourteen pre-
sently available methods including industrial standard tests for
the in vitro evaluation of antimicrobial surface designs for biomate-
rials implants and devices according to their specific antimicrobial
mechanism of action. Suggestions are made for a comprehensive
and versatile set of evaluation methods for specific antimicrobial
surface designs, enabling cross-laboratory comparison.
2. Definition of antimicrobial activity and efficacy

In order to assess antimicrobial activity of biomaterials and
coatings, a proper definition of the term ‘‘antimicrobial” is needed.
‘‘Antimicrobial” activity according to ISO 20743 is ‘‘the activity of an
antibacterial finish used to prevent or mitigate the growth of bacteria,
to reduce the number of bacteria or to kill bacteria”. The Japanese
Industry Standard (JIS) defines ‘‘antimicrobial” in JIS Z 2801 as
‘‘the condition inhibiting the growth of bacteria on the surface of prod-
ucts”. Importantly, whereas ISO 20743 mentions both growth inhi-
bition and bacterial killing in their definition of antimicrobial
activity, JIS Z 2801 only mentions growth inhibition. However, no
distinction is made between killing and growth inhibition in their
definition of antimicrobial activity. Both organizations judge the
efficacy of antimicrobial products based on the difference in the
logarithmic value of viable cell counts between antimicrobial test
products and inert controls after incubation in the presence of a
bacterial inoculum

A ¼ log Ct=C0ð Þ � log Tt=T0ð Þ ð1aÞ
in which C0 and T0 are the challenge numbers of bacteria before

incubation on the control and antimicrobial test sample respec-
tively, while Ct and Tt are the number of bacteria obtained typically
after 16–24 h incubation from the control and test sample respec-
tively. Ideally, C0 and T0 should be equal numbers, although this is
difficult to achieve when evaluating non-adhesive surfaces. In the
ideal conditions, Eq. (1a) reduces to its more well-known form

A ¼ log Ct=Ttð Þ ¼ log Ctð Þ � log Ttð Þ ð1bÞ
Most available standard methods represented in Table 1 judge

efficacy based on the value of antimicrobial activity according to
Eq. (1b). It should be noticed however, that due to the use of a log-
arithmic scale, values for antimicrobial activity greatly depend on
the bacterial challenge numbers applied: i.e. a log reduction of 2
involves a much larger reduction in bacterial numbers, when from
108 to 106 than when from 104 to 102. Eq. (1b) can also be applied
in its linear, analogous form [28,48–51] in which case it reads
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Að%Þ ¼ 100� Tt

Ct

� �
� 100 ð2Þ

Antimicrobial activity values A can be evaluated purely on the
basis of statistically significant differences, but from a microbiolog-
ical perspective, including the criteria in JIS Z 2801, differences are
only meaningful when more than two log-units or linearly
expressed, more than 99% [52].
3. The choice of bacterial species and challenge number

The microbial species causative to BAI differ greatly among the
different sites of functional restoration or support across the
human body. Table 2 gives an overview of species causative to
BAI of different implants and devices. Many organisms causative
to BAI are commensals of the skin, the intestines or the oral cavity,
especially after short-term use of an implant or device. Oppor-
tunistic pathogens may become involved, especially after long-
term use, such as Prevotella intermedia and Porphyromonas gingi-
valis in BAI associated with dental implants [58]. Infection after
short-term use of urinary catheters is often due to Staphylococcus
epidermidis, Escherichia coli or Enterococcus faecalis, while after
long-term catheterization Pseudomonas aeruginosa, Proteus mir-
abilis and Klebsiella pneumoniae come into play [61,62]. In relation
with studies into BAI and standard industrial tests, it is advisable to
use well-known laboratory strains in combination with fresh clin-
ical isolates. The use of laboratory strains offers the advantage of
better allowing comparison of results obtained in different institu-
tions and their specific properties are generally well studied. Com-
Table 2
Microbial species involved in BAI among different sites of functional restoration or
support across the human body.

Implant or device Species causative to BAI References

Joint prostheses Staphylococcus aureus
Staphylococcus epidermidis
Streptococci

[53]

Vascular grafts Staphylococcus epidermidis
Staphylococcus aureus

[6]

Central venous catheters Coagulase-Negative Staphylococci
Enterococci
Klebsiella pneumonia

[54]

Pace makers Coagulase-Negative Staphylococci
Staphylococcus aureus

[55]

Contact lenses Pseudomonas aeruginosa
Staphylococcus aureus
Serratia marcescens

[56]

Biliary stents Enterococcus faecium
Escherichia coli
Enterobacter cloacae
Klebsiella pneumonia

[57]

Dental implants Streptococcus mutans
Streptococcus sanguinis
Streptococcus mitis
Actinomyces viscosus
Prevotella intermedia
Porphyromonas gingivalis

[58,59]

Abdominal wall meshes Staphylococcus aureus
Streptococcus pyogenes
Coagulase-Negative Staphylococci
Escherichia coli

[10]

Voice prostheses Candida albicans
Streptococci
Staphylococcus epidermidis

[60]

Urinary catheters Escherichia coli
Enterococci
Klebsiella pneumoniae
Coagulase-Negative Staphylococci
Pseudomonas aeruginosa
Candida albicans
Proteus mirabilis

[2,61,62]
pared with clinical isolates however, repeated culturing of
laboratory strains may yield loss of their virulence, ability to pro-
duce EPS and form biofilms, including quorum sensing [63–65].
Many antimicrobial surface designs in the literature are not geared
in their pre-clinical development stage towards a specific implant
or device, in which case it is advisable to choose strains and species
generally occurring in BAI. From Table 2, it is clear that such a col-
lection of strains should minimally involve Gram-positive species
such as S. aureus and S. epidermidis. Since the cell wall architecture
of Gram-negative and Gram-positive bacterial strains differs con-
siderably [66] with a possible impact on the efficacy of antimicro-
bial surface designs, at least one Gram-negative strain should be
included too. Accordingly, in JIS Z 2801, it is suggested to use both
a Gram-negative E. coli and a Gram-positive S. aureus. Depending
on the application aimed for, pathogenic yeasts like Candida spp.
should be included in the evaluation of antimicrobial surface
designs, as they have antimicrobial susceptibilities that are very
different from bacteria [67].

Antimicrobial biomaterials and coatings can be challenged with
different numbers of microorganisms to evaluate their efficacy.
Therapeutic antimicrobial surface designs are mostly applied when
a patient shows clear signs of infection and a mature biofilm is pre-
sent. Therapeutically aimed antimicrobial surface designs such as
antibiotic-loaded beads and spacers for the treatment of
osteomyelitis [8,68,69] therewith face a much higher microbial
challenge than designs aimed to prophylactically counteract the
consequences of generally low levels of per-operative microbial
contamination. In absence of well-documented data on the num-
bers of organisms clinically found on biomaterial implants and
devices [70], industrial standard tests usually instruct to employ
a defined inoculum that is expressed as the number of colony
forming units (CFUs) per unit suspension volume, in which a mate-
rial with a specified surface area is placed. Inoculum concentra-
tions instructed in JIS Z 2801 for instance (2.5 � 106 CFU/mL),
reflect the concentration of bacteria found in urine of patients with
a catheter-associated-infection (105 even up to 108 CFU/mL [61]),
but these bear no relation with the number of bacteria found on
the catheter surface itself. In a measure of clinically relevant num-
bers of bacteria per unit area, the Infectious Diseases Society of
America [71] states in its guideline on the diagnosis and manage-
ment of intravenous catheter associated infections, that more than
100 CFUs on a 5 cm catheter tip reflect catheter colonization. This
would be roughly equivalent to 30 bacteria per cm2. However,
much higher localized numbers, i.e. more than 106 bacteria per
cm2 (roughly equivalent to 1% of full, bacterial mono-layer cover-
age), can be inferred from electron micrographs and fluorescent
in situ hybridization images of biofilms on biomaterial implants
and devices retrieved from patients with BAI [70,72–74], but these
represent bacterial numbers found in clinical infections, rather
than much lower initial per-operative bacterial contamination
numbers. Moreover, bacteria involved in per-operative contamina-
tion do not yet exhibit a mature biofilm architecture. Here too
unfortunately, reliable numbers are absent. Typically, only less
than 1 CFU per cm2 per hour is detected on a surface under a
downward airflow in a ventilated operating theatre [75]. In other
studies, 270 bacteria per cm2 of bacteria were found to contami-
nate a wound during surgery [76].

In summary, in the evaluation of antimicrobial surface designs,
a challenge concentration should be applied that is in line with the
intended application. Considering that most designs are intended
for prophylactic use, their evaluation against bacterial challenge
numbers derived from biomaterial implants and devices retrieved
from patients with clinical signs of infection, will put any prophy-
lactically intended design at a disadvantage. Therefore we here
suggest that antimicrobial surface designs intended to negate the
potential development of infection arising from per-operative bac-
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terial contamination, should be evaluated at challenge numbers of
1000 CFU per cm2 or less. Experimental conditions, especially in
the evaluation of non-adhesive designs, often dictate working at
concentrations of around 108 bacteria per mL, which is far higher
than observed for instance, in urine of patients with a catheter
associated infection [61]. These considerations should be thor-
oughly taken into account in any evaluation method of antimicro-
bial surface designs.
4. Sterilization and application of conditioning films prior to
evaluation

In most evaluation methods, antimicrobial surfaces are chal-
lenged by bacterial suspensions without further pre-treatment of
the sample surfaces. Sterilization of biomaterials may leave resid-
uals on their surface, affecting the surface chemistry designed. In
the case of ethylene oxide sterilization, such residuals can be irri-
tating, mutagenic and at high levels leading to organ damage and
carcinogenicity [77]. Moreover, sterilization residuals may inter-
fere with an antimicrobial surface design, regardless of its mecha-
Fig. 1. Schematics of agar zone of inhibition (a) and suspension (b) methods, as discussed
an indication of whether the method is identified as being suitable for antimicrobial su
nisms [78,79].The relevance of evaluating sterilization effects is
most evident in translational studies as sterilization is a prerequi-
site for implants or devices that are in direct contact with the
human body. In particular safety aspects around ethylene oxide
use are addressed in the ISO 10993 standard that guides biocom-
patibility evaluation of medical devices.

Also, in nearly all clinical settings, biomaterial implants or
devices are exposed to urine, saliva, tear fluid, sweat, blood, etce-
tera posing another challenge to antimicrobial surface designs
affecting their surface chemistry. Adsorption of macromolecular
components such as proteins from these body fluids proceeds
much faster than adhesion of bacteria to form a so-called ‘‘condi-
tioning film” [80]. Depending again on the application aimed for,
the potential presence of a conditioning film on an antimicrobial
coating should be taken into account, as for instance many patho-
gens have specific receptors for salivary and blood-borne protein
films [21,81–84]. Moreover, conditioning films may potentially
impair the efficacy of antimicrobial-release and contact-killing
designs [85,86].

Conditioning films can also form during evaluation of antimi-
crobial surface designs, especially when the bacterial challenge
in this review to evaluate the activity of antimicrobial surface designs, together with
rface designs based on release of antimicrobials, contact-killing or non-adhesivity.
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originates from suspensions in culture medium. Tryptic Soy Broth,
for instance, contains enzymatically digested soy bean proteins,
whereas Nutrient Broth contains peptones of often undefined ani-
mal sources and beef extract. Culture media can also be supple-
mented with serum, from which many different proteins can
sequentially adsorb to a sample surface [87] prior to or during
evaluation. Industrial tests provide conflicting instructions on the
use of undiluted (e.g. AATCC 100) or diluted (e.g. ISO 20743 and
JIS Z 2801) culture media to suspend bacteria, which can subse-
quently lead to different evaluation results.

Summarizing, it is suggested here that for evaluation of antimi-
crobial surface designs sterilization or application of an appropri-
ate conditioning film geared to the application aimed for should
always be taken into account.
Fig. 2. Schematics of methods comprising a high area to volume ratio, as discussed in th
indication of whether the method is identified as being suitable for antimicrobial surfac
5. How dead are killed bacteria?

There is a plethora of evaluation methods that have been devel-
oped and adapted to evaluate different antimicrobial surface
designs, that at the end of the assay require enumeration of dead
and live bacterial numbers. Whereas most methods are based on
culturing and enumeration of the number of CFUs (see Figs. 1–3),
many others include live/dead staining, fluorescence in situ
hybridization (FISH), MTT (based on the reduction of the MTT
dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-
mide to the purple formazan by NAD(P)H) or use of bioluminescent
strains to demonstrate bacterial death. It is beyond the scope of
this review to extensively discuss the merits of the different meth-
ods to demonstrate bacterial death. However, different types of
is review to evaluate the activity of antimicrobial surface designs, together with an
e designs based on release of antimicrobials, contact-killing or non-adhesivity.



Fig. 3. Schematics of adhesion (a) and biofilm (b) methods, as discussed in this review to evaluate the activity of antimicrobial surface designs, together with an indication of
whether the method is identified as being suitable for antimicrobial surface designs based on release of antimicrobials, contact-killing or non-adhesivity.
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antimicrobials can yield highly different types of damage to a bac-
terium with variable outcomes of a bacterial death quantification.
Live/dead staining (e.g. LIVE/DEAD� Bacterial Viability Kit
(BacLightTM)) composed of two nucleic acid-binding stains: SYTO
9 (green-fluorescent) and propidium iodide (red-fluorescent) [88]
in principle demonstrates the presence or absence of cell wall



J. Sjollema et al. / Acta Biomaterialia 70 (2018) 12–24 19
damage, but it has been shown that cell wall damaged, red-
fluorescent bacteria usually presumed dead, may sometimes turn
out to be culturable as well [89]. Bioluminescence and MTT heavily
rely on metabolic activity, but absence of metabolic activity does
not necessarily mean bacterial death. Moreover, with respect to
culturing as the generally accepted ‘‘gold standard”, many bacterial
strains are not culturable, while specific antimicrobials may bring
bacteria in a reversible ‘‘dead” state, called ‘‘viable-but-not-cultur
able” or in an irreversible ‘‘dead” state, such as by lysis [90]. This
makes demonstration of bacterial death one of the main challenges
that microbiologists are facing across all fields of applications on a
daily basis [91]. This challenge is extended greatly in the context of
BAI. Bacteria in biofilms on biomaterials implants and devices are
often subject to programmed cell death or the generation of a
hibernation state such as in ‘‘persister” or ‘‘dormant” cells [92].
Due to their extremely lowmetabolic activity, persister or dormant
cells are less susceptible to antimicrobials and easy to miss in
death evaluation methods. With the ongoing discussion on when
a bacterium can be declared death in absence of cell lysis as the
most evident sign of death, it is advisable to evaluate bacterial
death by culture based methods, extended with minimally one
other method.
6. Evaluation methods for antimicrobial surface designs

In the forthcoming sections we will briefly describe the most
common methods to evaluate antimicrobial surface designs, as
schematically depicted in Figs. 1–3, in which we also indicate their
suitability with respect to designs based on mechanisms of antimi-
crobial release, contact-killing or non-adhesivity.
6.1. Agar zone of inhibition methods

In agar zone of inhibition methods [27,46,93–97], samples are
placed with their antimicrobial side down on an agar plate inocu-
lated with microorganisms (see Fig. 1a.1). Possible antimicrobials
released from a sample subsequently diffuse into the agar yielding
a concentration gradient away from the sample. As long as the con-
centration in the agar is above theminimal inhibitory concentration
(MIC), a zone inwhich bacterial growth is inhibited can be observed,
the width of which is taken as ameasure of antimicrobial activity. It
is recommended that zones of inhibition be measured in different
directions or locations, depending on the sample geometry. Typi-
cally, a 24–48 h incubation time is applied after which the width
of the inhibition zone is measured, as a measure of both the amount
of antimicrobial released and the susceptibility of the bacterial
strain involved towards the antimicrobial. Themethoddoesnot pro-
vide an antimicrobial activity value as defined in Section 2, while it
has been suggested that only a zone of inhibition with a minimal
width of 10–15 mm indicates potential clinical significance [98].

Several variations of the above exists, most notably including
the regular transfer of samples to a freshly inoculated agar plate
in order to study the kinetics of antimicrobial release [99]. Other
variations include placing entire catheter sections in holes
punched into the agar [26,100] or the use of 3D agar molds to eval-
uate antimicrobial surface designs on real- or miniaturized
implants or devices [101].

The zone of inhibition method is the most commonly used
method for evaluating antimicrobial-releasing designs. It can also
be used for contact-killing designs by studying bacterial growth
directly underneath a sample. Several industrial standard evalua-
tion tests (see Table 1) relate with the zone of inhibition assay,
in which inoculated agar is poured over an antimicrobial surface,
implant or device before solidification, as e.g. in ASTM 2180 (see
Fig. 1a.2). Although culturing on agar counts as the gold standard
in antimicrobial evaluation, the method has as a drawback that
not all bacterial strains and species are culturable [102], while fur-
thermore zones of inhibition may depend on the rate of diffusion of
antimicrobials through the agar [103].

6.2. Suspension methods

In suspension methods such as ASTM E2149 [95,96,104–106], a
known challenge number of microorganisms in a suspension vol-
ume is exposed to an antimicrobial-releasing sample for defined
time periods after which the numbers of CFU in the suspension
are assessed and related with those found for control samples
(see Fig. 1b.1). Samples are placed in capped glass tubes containing
a defined volume of a microbially inoculated suspension medium.
After overnight growth under agitation at 37 �C, aliquots are drawn
from the suspension medium for agar plating and CFU counting
[107,108] to facilitate calculation of the antimicrobial activity
according to Section 2. Drawback is the use of microorganisms in
their planktonic state, in which they are much more susceptible
to antimicrobials than organisms in their biofilm-mode of growth.
Although optical density measurements are also done to asses
antimicrobial activity [42,109], optical density reflects both live
and dead bacteria without distinction. The sample area to fluid vol-
ume is critical in these methods and mostly small. This implies that
the build-up of a high antimicrobial concentration may be slow or
never occurring, particularly not when antimicrobial release is
from coatings with low housing capacities.

Immersion of porous, antimicrobially loaded materials such as
textile fabrics [46] into a suspension, as in JIS L1902, SN 195924,
AATCC 100, and ISO 20743 gives rise to a higher area to volume
ratio (see Fig. 1b.2). Absorption of a bacterial suspension in growth
medium into a porous material is allowed for a given period of
time after which the suspension is removed, assuming bacteria
remain entrapped in the medium absorbed in the pores. Next, por-
ous samples are incubated, typically up to 24 h at 37 �C, while
entrapped bacteria become exposed to the antimicrobials released.
After incubation, bacteria are removed from the porous material by
vortexing or sonication followed by serial dilution, agar plating and
CFU enumeration and final calculation of antimicrobial activity. To
prevent that possible antimicrobial release during vortexing or
sonication influences bacterial viability, use of a neutralizing broth
has been recommended in EN 1040 [104,110].

Suspension methods are also advocated like in ASTM E2149, to
evaluate bacterial contact-killing designs. In such an application of
suspension methods, a contact-killing surface is placed in a sus-
pension volume under shaking. Bacterial killing upon contact or
adhesion to the sample surface is enumerated from reductions in
the number of viable bacteria in suspension. Extensive experimen-
tal comparison of methods geared towards evaluation of contact-
killing designs has shown this method to be unsuitable for evalua-
tion of contact-killing surfaces, as mass-transport towards the sur-
face is poorly controlled and usually small [111].

6.3. Methods comprising a high area to volume ratio

Suspension methods are generally carried out at small (sample)
area to (fluid) volume ratios, which, pending on the clinical appli-
cation aimed for, is not always a realistic clinical scenario. This can
have a severe impact in the evaluation of antimicrobial-releasing
designs. Therefore a variety of methods has been developed that
allows to work under conditions of high area to volume ratios
enabling the rapid build-up of a high concentration of antimicro-
bials in case of antimicrobial-releasing designs.

In JIS Z 2801 or ISO 22196, high area to volume ratios are estab-
lished by sandwiching a microbial suspension in 0.2% medium
between a sample surface and a cover slip, confining the suspen-
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sion by capillary forces to around 250 lm thickness (see Fig. 2.1).
After incubation for 24 h, bacteria are retrieved by sonication or
extensive washing of both the sample material and the cover slip,
and subsequently cultured on agar plates followed by enumeration
to yield antimicrobial activities according to Section 2 [111–115].
For the evaluation of antimicrobial-releasing bone cements, it has
been suggested to grow bacteria in small gaps, cut in the cement.
Importantly, bacteria surviving antimicrobial-release from bone
cements in suspension methods with a small area to volume ratio,
were killed in a gap model [116].

The Petrifilm� all-in-one-plating system (3M, St. Paul, MN, USA)
[39,111,117–119] originally developed for fast screening of bacte-
rial contamination of food products, is a commercial, ready to use
system, consisting of a thin agar coat on a transparent foil that must
be folded over a sample surface in presence of a small bacterially
contaminated liquid volume of 20–50 lL (see Fig. 2.2). During an
incubation time of up to 48 h at 37 �C, bacterial colonies are formed.
Apart from nutrients, the foil is also loaded with a stain (tetra-
zolium chloride) to visualize bacterial colonies that can subse-
quently be enumerated and used to calculate antimicrobial
activity according to Section 2 without any further processing.
The combination of agar and stain in an all-in-one-plating method
avoids washing or sonication and leaves relatively little waste. The
possibility to enumerate bacteria implies applicability of antimicro-
bial activity values as defined in Section 2, but cannot be directly
applied when using high challenge concentrations or when the
antimicrobial activity is low. In these cases the foil turns completed
stained over the entire sample surface. This drawback can be cir-
cumvented for high challenge numbers by diluting the bacterial
suspension fromwhich challenge aliquots for inoculation are taken.
By determining the number of CFUs of a diluted suspension on sam-
ples known to be non-antimicrobial, challenge numbers in more
concentrated challenge suspensions can then be easily calculated.

The small volume of the all-in-one-plating method also
enforces direct contact of bacteria with the sample, making the
method not only suitable for antimicrobial-releasing but also for
contact-killing designs. It has been strongly recommended how-
ever, that when an all-in-one-plating method is used for evaluating
contact-killing surfaces, it should first be ascertained, for instance
using a zone of inhibition method, that there are no antimicrobial
components leaching out of the sample. Due to the small volume
involved in an all-in-one-plating method, leachables may easily
interfere with contact-killing mechanisms. Also JIS Z 2801 has been
suggested for evaluation of contact-killing designs [111,112]. In a
slight modification of JIS Z 2801, a bacterially inoculated filter is
placed on a contact-killing surface on which a 20 lL droplet is posi-
tioned containing 1% Tryptic Soy Broth after which the procedure is
similar to the JIS Z 2801 test [120,121] (see Fig. 2.3). This so called
‘‘printing” of bacteria onto a sample to establish direct contact
between a contact-killing surface and bacteria has also been pre-
scribed in the ISO 20743 where a standard force of 4 N is applied
to press the filter on a sample surface. The modified JIS method
however, has yielded bacterial growth on surfaces, indicated in
all-in-one-plating and JIS Z 2801 methods as being contact-
killing [111], possibly demonstrating more favorable conditions
for bacterial growth in the sheltered environment of the filter, as
applied in the modified JIS test.

To evaluate contact-killing designs towards bacterial aerosols,
spraying has been proposed [28,122,123] (see Fig. 2.4). This
method was particularly applied to evaluate contact-killing sur-
faces that prevent growth of contamination by air-borne patho-
gens. After spraying a diluted bacterial suspension on test
samples, samples are subsequently air-dried for 2 min at room
temperature after which agar slabs of growth medium with the
size of the sprayed surface are placed on top of the samples and
covered with Parafilm� to prevent their drying-out during over-
night incubation. Bacterial colonies grown on the sample surfaces
in the agar are counted by visual inspection without any further
processing of the samples.

In an extensive comparison of methods to evaluate bacterial
contact-killing methods against Gram-positive and Gram-
negative bacterial strains [111], it has been concluded that Petri-
film� all-in-one-plating and JIS Z 2801 methods are most suitable
to this end, provided that they are complemented with a zone of
inhibition assay to exclude that leachables out of a sample add
an additional killing mechanism.

6.4. Adhesion-based methods

Adhesion of bacteria to a substratum surface is one of the first
steps in biofilm formation. Methods to study initial bacterial adhe-
sion usually involve adhesion of bacteria from a static or flowing
fluid suspension. In static systems, mass transport of microorgan-
isms to substratum surfaces mostly occurs through sedimentation
[124], while in flow perfusion systems convective-diffusion con-
tributes to mass transport. Since adhesion implies intimate contact
between bacteria and substratum surfaces, adhesion-based meth-
ods are excellently suited for evaluating contact-killing designs,
especially because contact-killing designs by cationic surfaces will
yield electrostatic attraction of bacteria to the surface with an
impact on adhesion numbers [125].

Static adhesion assays are relatively easy to carry out, e.g. test
samples are exposed to a droplet of a bacterial suspension from
which bacteria settle [49,126] (see Fig. 3a.1 and a.2) or are placed
in well plates under mild shaking conditions [127] while keeping
the number of bacteria allowed to sediment on a substratum sur-
face below monolayer coverage in case of contact-killing designs.
After a specific time period in which bacterial adhesion takes place,
e.g. 1–4 h, the number of adhering viable bacteria is assessed by
first carefully washing off all non-adhering bacteria, and then col-
lecting adhering bacteria by sonication and subsequent CFU count-
ing. By using live/dead staining of adhering bacteria, the ratio of
killed bacteria can be determined by fluorescence microscopy.
Alternatively, after careful washing off non-adherent bacteria, the
sample is covered with a nutrient agar slab (see Fig. 3a.2) and sub-
sequently incubated. No steps to dislodge the bacteria are needed
in this case, and individual viable bacteria adhering to the surface
grow out as colonies, which are easily counted [91,128].

Drawback of static assays is that enumeration requires washing
off non-adherent bacteria, implying that removal of the fluid phase
above the substratum should be done extremely careful in order to
prevent inadvertent removal of adhering bacteria by passing
liquid-air interfaces or flowing fluid in general. Especially passing
liquid-air interfaces are notorious for exerting high detachment
forces on adhering bacteria causing their removal [129,130].

Static adhesion-based methods are predominantly applied in
testing antimicrobial-releasing or contact-killing surfaces, but are
less well suited for anti-adhesive designs due to the lack of control
of mass transport conditions and fluid flow forces operative during
sedimentation and fluid removal. Flow perfusion methods not only
allow to control mass transport, but also offer the possibility to
accurately calculate the fluid flow forces on the adhering bacteria
and fine-tune them to those occurring for instance in urinary
catheters, vascular grafts, around artificial heart valves or extralu-
minal surfaces of cardiovascular catheters or to flow of therapeutic
fluids as in intravenous catheters [131]. Different models of flow
perfusion systems exist of which the parallel flow chamber is the
most common one, particularly since fluid flow forces and mass
transport are relatively easy to calculate (see Fig. 3a.3 and a.4)
[124,132,133]. When combined with in situ observation of adher-
ing bacteria, ‘‘washing” or ‘‘slight rinsing artefacts” can be fully
avoided making the method extremely suitable to evaluate non-
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adhesive antimicrobial designs to which bacteria usually adhere
very weakly making them amenable to inadvertent removal.

Flow perfusion systems are also highly suitable to evaluate
contact-killing designs, in which case the flow of the bacterial sus-
pension after the adhesion phase, is subsequently switched to a
flow of nutrient media, that only allows surviving bacteria to grow
out and form a biofilm from which bacteria are removed and
analyzed by CFU counting and live/dead staining [134]. Alterna-
tively, after the adhesion phase and after flushing out non-
adherent bacteria, the chamber can be injected with live/dead stain
after which fluorescence microscopy can directly be applied to
obtain the antimicrobial efficacy of the sample (without exposing
the adhering bacteria to a passing liquid-air interface) [135] (see
Fig. 3a.3 and a.4). Flow perfusion systems are less suitable to eval-
uate antimicrobial-releasing designs as the antimicrobials released
are rapidly washed out of the system. In fact, growth of bacteria
adhering to antibiotic-releasing bone cements has been observed
in flow perfusion systems, that was absent in static systems com-
prising a high area to volume ratio [136].

6.5. Biofilm-based methods

Biofilm-based methods are in essence similar to adhesion-based
methods but are carried out over much longer periods of time and
must involve the presence of nutrients. Biofilm-based methods
can rely on a plethora of different systems, that include all common
static and flow perfusion systems, modified Robbins devices, drip
flow reactors including the constant depth film reactor [137–139]
rotary biofilm reactors and microfluidic devices [102,140,141].

All biofilm-based methods have to start with an adhesion step
(see Fig. 3b), preferentially carried out from a low nutrient suspen-
sion as the presence of high nutrient concentrations in suspension
eliminates the need for planktonic bacteria to adhere to a surface,
where they ‘‘know” most nutrients accumulate [31,142] a condi-
tion that they have in common with e.g. the JIS Z 2801 method.
In the subsequent growth step, nutrient availability can be readily
controlled in flow displacement systems which is important to
avoid artefacts that might arise for instance from nutrient deple-
tion of the environment in which biofilm growth of adhering bac-
teria is pursued. Biofilm-based methods seldom yield full
eradication of biofilm by any antimicrobial design, and the best
that can be achieved by any design is reduced amount of biofilm
or delayed growth. In case of antimicrobial-releasing designs,
growth inhibition or killing heavily depends on accumulation pos-
sibilities of antimicrobials released in the biofilm. This requires an
appropriate biofilm structure that prevents wash-out of the
antimicrobials, in which respect it is important to notice that bio-
films grown in absence of any mechanical environmental stimulus
such as under static conditions [31,143] (see Fig. 3b2), are usually
fluffy and highly aqueous, which is opposed to biofilms grown in
presence of applied compression or under fluid flow [144,145].
Since contact-killing surfaces seldom kill all adhering bacteria,
biofilm-based methods will always show biofilm growth on
antimicrobial contact-killing designs [134]. Similarly, even on the
most non-adhesive poly(ethylene)glycol polymer brush coating,
bacteria have been demonstrated to adhere and form a biofilm
very slowly, as compared to other surfaces [146]. This puts special
emphasis on the inclusion of proper control surfaces in biofilm-
based methods and the duration of time allowed for growth. Calcu-
lation of antimicrobial activity values according to Eq. (2) is well
possible in most cases, but will decrease over time.

7. Concluding comments

This reviews clearly indicates (see Figs. 1–3), that there is no
single method or industrial test that allows to distinguish antimi-
crobial designs according to the three mechanisms identified here.
However, these figures clearly indicate that for each of the three
antimicrobial mechanisms distinguished in this review, suitable
methods are available. It is anticipated that use of this review will
avoid the use of wrong methods for evaluating new antimicrobial
designs and therewith facilitate downward clinical translation.
Yet, further method standardization is needed. In particular, simple
industry standards should be established that allow adhesion
under flow conditions in which shear rates are quantifiable and
in a range that complies with shear rates occurring in different
clinical applications. In order to create the necessary high
through-put, micro-fluidic systems [102,140] may become useful,
although their versatility with respect to the materials that can
evaluated is limited. Moreover, considering the development of
multi-functional coatings [39] that are not only equipped with an
antimicrobial functionality but also with tissue integrating moi-
eties, academic developments of co-culture systems [147] should
be standardized into industrial tests, preferably encompassing host
immune cells as well [148]. In an era in which animal experiments
become increasingly difficult to obtain permission for [21,52],
these standardizations are extremely important and may reduce
the need for animal experiments.
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