610 research outputs found

    Effects of False Tilt Cues on the Training of Manual Roll Control Skills

    Get PDF
    This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case

    Objective Motion Cueing Criteria for Commercial Transport Simulators

    Get PDF
    This paper adds data to establish fidelity criteria for the simulator motion system diagnostic test now required during commercial aircraft simulator approval in the United States. Nineteen airline transport pilots flew three tasks under six different motion conditions in an experiment on the NASA Vertical Motion Simulator. The motion conditions allowed refinement of the initial fidelity criteria developed in previous experiments. In line with these previous experiments, the motion condition significantly affected (1) false motion cue pilot ratings, and sink rate and longitudinal deviation at touchdown in the approach and landing task, (2) false motion cue pilot ratings, roll deviations, and maximum pitch rate in the stall task, and (3) false motion cue pilot ratings, heading deviation, and pedal reaction time after an engine failure in the take-off task. Combining data from three experiments, significant differences in pilot-vehicle performance were used to define objective motion cueing criteria boundaries. These fidelity boundaries suggest that some hexapod simulators can possibly produce motion cues with improved fidelity in several degrees of freedom

    Time-Varying Manual Control Identification in a Stall Recovery Task Under Different Simulator Motion Conditions

    Get PDF
    This paper adds data to help the development of simulator motion cueing guidelines for stall recovery training by identifying time-varying manual control behavior in a stall recovery task under different simulator motion conditions. A study was conducted with seventeen general aviation pilots in the NASA Ames Vertical Motion Simulator. Pilots had to follow a flight director through four stages of a high-altitude stall task. A time-varying identification method was used to quantify how pilot manual control parameters change throughout different stages of the task in both roll and pitch. Four motion configurations were used: no motion, generic hexapod motion, enhanced hexapod motion and full motion. Pilot performance was highest for the enhanced hexapod and full motion configurations in both roll and pitch, and the lowest without motion. In the roll axis, the pilot position gain did not significantly change throughout the stall task, but was the lowest for the condition with no motion. The pilot roll velocity gain was significantly different between motion conditions, the largest difference being found close to the stall point. The enhanced hexapod motion condition had the highest pilot roll velocity gain. In the pitch axis, the pilot position gain was significantly different between time segments but not between motion conditions. The pilot pitch velocity gain was highest for the full motion condition and increased close to the stall point, but did not change significantly for the other motion conditions. Overall, pilot control behavior under enhanced hexapod motion was most similar to that under full aircraft motion. This indicates that motion cueing for stall recovery training on hexapod simulators might be improved by using the principles behind the enhanced hexapod motion configuration

    Refinement of Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

    Get PDF
    The objective of this paper is to refine objective motion cueing criteria for commercial transport simulators based on pilots' performance in three flying tasks. Actuator hardware and software algorithms determine motion cues. Today, during a simulator qualification, engineers objectively evaluate only the hardware. Pilot inspectors subjectively assess the overall motion cueing system (i.e., hardware plus software); however, it is acknowledged that pinpointing any deficiencies that might arise to either hardware or software is challenging. ICAO 9625 has an Objective Motion Cueing Test (OMCT), which is now a required test in the FAA's part 60 regulations for new devices, evaluating the software and hardware together; however, it lacks accompanying fidelity criteria. Hosman has documented OMCT results for a statistical sample of eight simulators which is useful, but having validated criteria would be an improvement. In a previous experiment, we developed initial objective motion cueing criteria that this paper is trying to refine. Sinacori suggested simple criteria which are in reasonable agreement with much of the literature. These criteria often necessitate motion displacements greater than most training simulators can provide. While some of the previous work has used transport aircraft in their studies, the majority used fighter aircraft or helicopters. Those that used transport aircraft considered degraded flight characteristics. As a result, earlier criteria lean more towards being sufficient, rather than necessary, criteria for typical transport aircraft training applications. Considering the prevalence of 60-inch, six-legged hexapod training simulators, a relevant question is "what are the necessary criteria that can be used with the ICAO 9625 diagnostic?" This study adds to the literature as follows. First, it examines well-behaved transport aircraft characteristics, but in three challenging tasks. The tasks are equivalent to the ones used in our previous experiment, allowing us to directly compare the results and add to the previous data. Second, it uses the Vertical Motion Simulator (VMS), the world's largest vertical displacement simulator. This allows inclusion of relatively large motion conditions, much larger than a typical training simulator can provide. Six new motion configurations were used that explore the motion responses between the initial objective motion cueing boundaries found in a previous experiment and what current hexapod simulators typically provide. Finally, a sufficiently large pilot pool added statistical reliability to the results

    Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

    Get PDF
    This paper intends to help establish fidelity criteria to accompany the simulator motion system diagnostic test specified by the International Civil Aviation Organization. Twelve air- line transport pilots flew three tasks in the NASA Vertical Motion Simulator under four different motion conditions. The experiment used three different hexapod motion configurations, each with a different tradeoff between motion filter gain and break frequency, and one large motion configuration that utilized as much of the simulator's motion space as possible. The motion condition significantly affected: 1) pilot motion fidelity ratings, and sink rate and lateral deviation at touchdown for the approach and landing task, 2) pilot motion fidelity ratings, roll deviations, maximum pitch rate, and number of stick shaker activations in the stall task, and 3) heading deviation after an engine failure in the takeoff task. Significant differences in pilot-vehicle performance were used to define initial objective motion cueing criteria boundaries. These initial fidelity boundaries show promise but need refinement

    Transfer of Training on the Vertical Motion Simulator

    Get PDF
    This paper describes a transfer-of-training study in the NASA Ames Vertical Motion Simulator (VMS). Sixty-one general aviation pilots, divided in four groups, trained on four challenging commercial transport tasks with four motion conditions: no motion, small hexapod, large hexapod, and VMS motion. Then, every pilot repeated the tasks with VMS motion to determine if training with different motion conditions had an effect. New objective motion criteria guided the selection of the motion parameters for the small and large hexapod conditions. Considering results that were statistically significant, or marginally, the motion condition used in training affected 1) longitudinal and lateral touchdown location; 2) the number of secondary stall warnings in a stall recovery; 3) pilot ratings of motion utility and maximum load factor obtained in an overbanked upset recovery; and 4) pilot ratings of motion utility and pedal input reaction time in the engine-out-on-takeoff task. Since the motion condition revealed statistical differences on objective measures in all the tasks, even with some in the direction not predicted, trainers should be cautious not to oversimplify the effects of platform motion. Evidence suggests that the new objective motion criteria may offer valid standardization benefits, as instances arose when the higher-fidelity hexapod motion, as predicted by the criteria, provided better cues in training than the lower-fidelity hexapod motion
    • …
    corecore