1,323 research outputs found

    Study on the anti-cerebral ischemia effect of borneol and its mechanism

    Get PDF
    Background: Borneol is the processed item from resin of Dryobalanops aromatica Gaertn. f. It can enhance the activity of antioxidant enzymes in brain tissue and reduce inflammatory response by improving the energy metabolism of ischemic brain regions, and thereby reduces brain tissue damage. The objective of this paper was to study the anti-cerebral ischemia effect of borneol and its mechanism.Materials and Methods: The anti-cerebral ischemia effect of borneol was studied by ligation of bilateral common carotid arteries (CCA), and vagus nerves in mice and the acute cerebral ischemia-reperfusion experiment in rats.Results: Compared with the blank and solvent control groups, the borneol low-; medium-; and high-dose groups can significantly prolong the gasping time of mice after decapitation, and extend the survival time of mice after ligation of bilateral CCA, and vagus nerves.Conclusion: Compared with the Xueshuantong injection group, the prolongation of survival time of mice after ligation of bilateral CCA, and vagus nerves was more apparent in the high-dose borneol experimental group; each experimental group can significantly reduce the number of leukocyte infiltration, the number of ICAM-1-positive vessels, as well as the number of TNF-α-positive cells.Conclusion: Borneol has an anti-cerebral ischemia effect.Key words: borneol; cerebral ischemia-reperfusion; IL-1β, TNF-α; ICAM-

    Design and Testing of Cesium Atomic Concentration Detection System Based on TDLAS

    Full text link
    In order to better build the Neutral Beam Injector with Negative Ion Source (NNBI), the pre-research on key technologies has been carried out for the Comprehensive Research Facility for Fusion Technology (CRAFT). Cesium seeding into negative-ion sources is a prerequisite to obtain the required negative hydrogen ion. The performance of ion source largely depends on the cesium conditions in the source. It is very necessary to quantitatively measure the amount of cesium in the source during the plasma on and off periods (vacuum stage). This article uses the absorption peak of cesium atoms near 852.1nm to build a cesium atom concentration detection system based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. The test experiment based on the cesium cell is carried out, obtained the variation curve of cesium concentration at different temperatures. The experimental results indicate that: the system detection range is within 5*10E6-2.5*10E7 pieces/cm3 and the system resolution better than 1*10E6 pieces/cm3.Comment: 8 pages,7 figures, the 20th International Symposium on Laser-Aided Plasma Diagnostic

    SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G

    Get PDF
    Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process. © 2014 Chen et al

    Transcriptional activation of ENPP1 by osterix in osteoblasts and osteocytes

    Get PDF
    Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the main source of extracellular pyrophosphate. Along with tissue-nonspecific alkaline phosphatase (TNAP), ENPP1 plays an important role in balancing bone mineralisation. Although well established in pre-osteoblasts, the regulating mechanisms of ENPP1 in osteoblasts and osteocytes remain largely unknown. Using bioinformatic methods, osterix (Osx), an essential transcription factor in osteoblast differentiation and osteocyte function, was found to have five predicted binding sites on the ENPP1 promoter. ENPP1 and Osx showed a similar expression profile both in vitro and in vivo. Over-expression of Osx in MC3T3-E1 and MLO-Y4 cells significantly up-regulated the expression of ENPP1 (p < 0.05). The consensus Sp1 sequences, located in the proximal ENPP1 promoter, were identified as Osx-regulating sites using promoter truncation experiments and chromatin immunoprecipitation (ChIP) assays. The p38-mitogen-activated protein kinase (MAPK) signalling pathway was demonstrated to be responsible for ENPP1 promoter activation by Osx. Runt-related transcription factor 2 (Runx2) was confirmed to have synergistic effects with Osx in activating ENPP1 promoter. Taken together, these results provided evidence of the regulating mechanisms of ENPP1 transcription in osteoblasts and osteocytes

    A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum

    Get PDF
    BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory

    InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    Get PDF
    The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100), (210), (311), and (731) substrates. A broad photoluminescence emission peak (~950 nm) with a full width at half maximum (FWHM) of 48 nm is obtained from the sample grown on (210) substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100) substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311) with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications

    Identifying the structure of Zn-N-2 active sites and structural activation

    Get PDF
    Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications

    Search for K_S K_L in psi'' decays

    Full text link
    K_S K_L from psi'' decays is searched for using the psi'' data collected by BESII at BEPC, the upper limit of the branching fraction is determined to be B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is compared with the prediction of the S- and D-wave mixing model of the charmonia, based on the measurements of the branching fractions of J/psi-->K_S K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur
    corecore