205 research outputs found

    Rainfall trend analysis and geospatial mapping of the Kelantan River Basin

    Get PDF
    Trend analysis was widely used as a tool to detect changes in climatic and hydrologic time series data such as rainfall. Fourteen rainfall stations in the Kelantan River Basin were used to detect trends for each of the sub-basin areas. Two objectives of the study are (i) to quantify the changing trends of rainfall of Kelantan River using statistical tests (i.e., Mann-Kendall test and Sen’s slope test) based on monthly, seasonal, and annual time series, and secondly, (ii) to map rainfall trend according to Mann-Kendall test result. Analysis for these two tests revealed that several stations indicated significant increasing and decreasing trends for monthly, seasonal, and annual rainfall time series. The study found that rainfall varies in different months, seasons, and annually as evidenced by the graph and trend maps. Therefore, this information will benefit especially for flood preparation and responses in Kelantan River Basin which annually experiences monsoon flooding

    Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia

    Get PDF
    The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    Chromium removal from aqueous solution by a PEI-silica nanocomposite

    Get PDF
    It is essential and important to determine the adsorption mechanism as well as removal efficiency when using an adsorption technique to remove toxic heavy metals from wastewater. In this research, the removal efficiency and mechanism of chromium removal by a silica-based nanoparticle were investigated. A PEI-silica nanoparticle was synthesized by a one-pot technique and exhibited uniformly well-dispersed PEI polymers in silica particles. The adsorption capacity of chromium ions was determined by a batch adsorption test, with the PEI-silica nanoparticle having a value of 183.7 mg/g and monolayer sorption. Adsorption of chromium ions was affected by the solution pH and altered the nanoparticle surface chemically. First principles calculations of the adsorption energies for the relevant adsorption configurations and XPS peaks of Cr and N showed that Cr(VI), [HCrO4](-) is reduced to two species, Cr(III), CrOH2+ and Cr3+, by an amine group and that Cr(III) and Cr(VI) ions are adsorbed on different functional groups, oxidized N and NH3+
    corecore