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Abstract
In this paper, new stochastic global exponential stability criteria for delayed impulsive
Markovian jumping p-Laplace diffusion Cohen-Grossberg neural networks (CGNNs)
with partially unknown transition rates are derived based on a novel
Lyapunov-Krasovskii functional approach, a differential inequality lemma and the
linear matrix inequality (LMI) technique. The employed methods are different from
those of previous related literature to some extent. Moreover, a numerical example is
given to illustrate the effectiveness and less conservatism of the proposed method
due to the significant improvement in the allowable upper bounds of time delays.

Keywords: stochastic exponential stability; Laplace diffusion; linear matrix inequality
(LMI)

1 Introduction
It is well known that Cohen-Grossberg in [] proposed originally the Cohen-Grossberg
neural networks (CGNNs). Since then the CGNNs have found their extensive applications
in pattern recognition, image and signal processing, quadratic optimization, and artificial
intelligence [–]. However, these successful applications are greatly dependent on the
stability of the neural networks, which is also a crucial feature in the design of the neural
networks. In practice, both time delays and impulse may cause undesirable dynamic net-
work behaviors such as oscillation and instability [–]. Therefore, the stability analysis
for delayed impulsive CGNNs has become a topic of great theoretic and practical impor-
tance in recent years [–]. Recently, CGNNs with Markovian jumping parameters have
been extensively studied due to the fact that systems withMarkovian jumping parameters
are useful in modeling abrupt phenomena such as random failures, operating in different
points of a nonlinear plant, and changing in the interconnections of subsystems [–].
Noise disturbance is unavoidable in real nervous systems, which is a major source of in-
stability and poor performances in neural networks. A neural network can be stabilized
or destabilized by certain stochastic inputs. The synaptic transmission in real neural net-
works can be viewed as a noisy process introduced by randomfluctuations from the release
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of neurotransmitters and other probabilistic causes. Hence, noise disturbance should be
also taken into consideration in discussing the stability of neural networks [–]. On the
other hand, diffusion phenomena cannot be unavoidable in real world. Usually diffusion
phenomena were simulated by linear Laplacian diffusion for simplicity in many previous
literatures [, –]. However, diffusion behavior is so complicated that the nonlinear
reaction-diffusion models were considered in several papers [, –]. The nonlinear
p-Laplace diffusion (p > ) was considered in simulating some diffusion behaviors []. In
addition, aging of electronic component, external disturbance, and parameter perturba-
tions always result in a side-effect of partially unknown Markovian transition rates [,
]. To the best of our knowledge, stochastic stability for the delayed impulsiveMarkovian
jumping p-Laplace diffusion CGNNs has rarely been considered. Besides, the stochastic
exponential stability always remains the key factor of concern owing to its importance
in designing a neural network, and such a situation motivates our present study. So, in
this paper, we shall investigate the stochastic global exponential stability criteria for the
above-mentioned CGNN by means of the linear matrix inequalities (LMIs) approach.

2 Model description and preliminaries
The stability of the following Cohen-Grossberg neural networks was studied in some pre-
vious literature via the differential inequality (see, e.g., []).⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂t = ∇ · (D ◦ ∇u(t,x)) – Ã(u(x, t))

× [̃B(u(t,x)) –Cf̃ (u(t,x)) – D̃g(u(t – τ (t),x)) + J],
for all t ≥ t, t �= tk ,x ∈ �,

u(tk ,x) =Mku(t–k ,x) +Nh̃(u(t–k – τ (t),x)), k = , , . . . ,

(.)

where u = u(t,x) = (u(t,x),u(t,x), . . . ,un(t,x))T , f̃ (u) = (̃f(u), f̃(u), . . . , f̃n(un))T , g̃(u) =
(̃g(u), g̃(u), . . . , g̃n(un))T .
In this paper, we always assume h̃ ≡  for some rational reason (see []). According to

[, Definition .], a constant vector u∗ ∈ Rn is said to be an equilibrium point of system
(.) if

B̃
(
u∗) –Cf̃

(
u∗) + D̃g

(
u∗) + J = , and (Mk – I)u∗ +Nh̃

(
u∗) = . (.)

Let v = u – u∗, then system (.) with h̃≡  can be transformed into⎧⎪⎨⎪⎩
∂v
∂t = ∇ · (D ◦ ∇v(t,x)) –A(v(t,x))[B(v(t,x)) –Cf (v(t,x)) –Dg(v(t – τ (t),x))],
for all t ≥ t, t �= tk ,x ∈ �,

v(tk ,x) =Mkv(t–k ,x), k = , , . . . ,
(.)

where v = v(t,x) = (v(t,x), v(t,x), . . . , vn(t,x))T , u∗ = (u∗
 ,u∗

, . . . ,u∗
n)T ,A(v(t,x)) = Ã(v(t,x)+

u∗) = Ã(u(t,x)),

B
(
v(t,x)

)
= B̃

(
u(t,x)

)
– B̃

(
u∗), f

(
v(t,x)

)
= f̃

(
u(t,x)

)
– f̃

(
u∗),

g
(
v(t,x)

)
= g̃

(
u(t,x)

)
– g̃

(
u∗), (.)

and

f (v) =
(
f(v), f(v), . . . , fn(vn)

)T , g(v) =
(
g(v), g(v), . . . , gn(vn)

)T .
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Then, according to [, Definition .], v ≡  is an equilibrium point of system (.).
Hence, further we only need to consider the stability of the null solution of Cohen-
Grossberg neural networks. Naturally, we propose the following hypotheses on system
(.) with h≡ .
(A) A(v(t,x)) is a bounded, positive, and continuous diagonal matrix, i.e., there exist

two positive diagonal matrices A and A such that  < A≤ A(v(t,x))≤ A.
(A) B(v(t,x)) = (b(v(t,x)),b(v(t,x)), . . . ,bn(vn(t,x)))T such that there exists a

positive definite matrix B = diag(B,B, . . . ,Bn)T ∈ Rn satisfying

bj(r)
r

≥ Bj, ∀j = , , . . . ,n, and r ∈ R.

(A) There exist constant diagonal matrices Gk = diag(G(k)
 ,G(k)

 , . . . ,G(k)
n ),

Fk = diag(F (k)
 ,F (k)

 , . . . ,F (k)
n ), k = ,  with |F ()

j | ≤ F ()
j , |G()

j | ≤ G()
j , j = , , . . . ,n,

such that

F ()
j ≤ fj(r)

r
≤ F ()

j , G()
j ≤ gj(r)

r
≤ G()

j , ∀j = , , . . . ,n, and r ∈ R.

Remark . In many previous works (see, e.g., [, ]), authors always assumed

 ≤ fj(r)
r

≤ Fj,  ≤ gj(r)
r

≤ Gj, ∀i = , , . . . ,n.

However, F ()
j , G()

j in (A) may not be positive constants, and hence the functions f , g are
more generic.

Remark . It is obvious from (.) that B() =  = f () = g(), and then B() – Cf () +
Dg() = .

Since stochastic noise disturbance is always unavoidable in practical neural networks, it
may be necessary to consider the stability of the null solution of the following Markovian
jumping CGNNs:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv(t,x) = {∇ · (D(t,x, v) ◦ ∇pv(t,x)) –A(v(x, t))[B(v(t,x)) –C(r(t))f (v(t,x))

–D(r(t))g(v(t – τ (t),x))]}dt + σ (t, v(t,x), v(t – τ (t),x), r(t))dw(t),
for all t ≥ t, t �= tk ,x ∈ �,

v(tk ,x) =Mk(r(t))v(t–k ,x), k = , , . . . .

(.)

The initial conditions and the boundary conditions are given by

v(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ , ]× �, (.b)

and

B
[
vi(t,x)

]
= , (t,x) ∈ [–τ , +∞)× ∂�, i = , , . . . ,n. (.c)

Here p >  is a given scalar, and � ∈ Rm is a bounded domain with a smooth boundary
∂� of class C by �, v(t,x) = (v(t,x), v(t,x), . . . , vn(t,x))T ∈ Rn, where vi(t,x) is the state
variable of the ith neuron and the jth neuron at time t and in a space variable x. Matrix

http://www.advancesindifferenceequations.com/content/2013/1/183


Rao et al. Advances in Difference Equations 2013, 2013:183 Page 4 of 14
http://www.advancesindifferenceequations.com/content/2013/1/183

D(t,x, v) = (Djk(t,x, v))n×m satisfies Djk(t,x, v) ≥  for all j, k, (t,x, v), where the smooth
functions Djk(t,x, v) are diffusion operators. D(t,x, v) ◦ ∇pv = (Djk(t,x, v)|∇vi|p– ∂vi

∂xk
)n×m

denotes the Hadamard product of matrix D(t,x, v) and ∇pv (see [] or [] for details).
Denotew(t) = (w()(t),w()(t), . . . ,w(n)(t))T , wherew(j)(t) is scalar standard Brownianmo-

tion defined on a complete probability space (�∗,F ,P) with a natural filtration {Ft}t≥.
Noise perturbations σ : R+ ×Rn ×Rn ×S → Rn×n is a Borel measurable function. {r(t), t ≥
} is a right-continuous Markov process on the probability space, which takes values in
the finite space S = {, , . . . , s} with generator � = {πij} given by

P
(
r(t + δ) = j

∣∣ r(t) = i
)
=

{
πijδ + o(δ), j �= i,
 + πijδ + o(δ), j = i,

where πij ≥  is a transition probability rate from i to j (j �= i) and πii = –
∑s

j=,j �=i πij, δ > ,
and limδ→ o(δ)/δ = . In addition, the transition rates of the Markovian chain are con-
sidered to be partially available, namely some elements in the transition rate matrix � are
time-invariant but unknown. For instance, a systemwith three operationmodes may have
the transition rate matrix � as follows:

� =

⎡⎢⎣π ? ?
? π ?

π π π

⎤⎥⎦,
where ‘?’ represents the inaccessible element. For notational clarity, we denote Sikn �
{j, if πij is known} and Siun � {j, if πij is unknown, and j �= i} for a given i ∈ S. Denote α̃i ≥
maxj∈Siun πij. The time-varying delay τ (t) satisfies  < τ (t) ≤ τ with τ̇ (t) ≤ κ < . A(v(t,x)) =
diag(a(v(t,x)),a(v(t,x)), . . . ,an(vn(t,x))), B(v(t,x)) = (b(v(t,x)),b(v(t,x)), . . . ,bn(vn(t,
x)))T , where aj(vj(t,x)) represents an amplification function, and bj(vj(t,x)) is an appropri-
ately behavior function. C(r(t)), D(r(t)) and Mk(r(t)) are denoted by Ci, Di, Mki with Ci =
(cilk)n×n, Di = (di

lk)n×n, respectively, and cilk , d
i
lk denote the connection strengths of the kth

neuron on the lth neuron in themode r(t) = i, respectively.Mki is a symmetrical matrix for
any given k, i. Denote vector functions f (v(t,x)) = (f(v(t,x)), f(v(t,x)), . . . , fn(vn(t,x)))T ,
g(v(t,x)) = (g(v(t,x)), . . . , gn(vn(t,x)))T , where fj(vj(t,x)), gj(vj(t,x)) are neuron activation
functions of the jth unit at time t and in a space variable x.
In addition, we always assume that t =  and v(t+k ,x) = v(tk ,x) for all k = , , . . . , where

v(t–k ,x) and v(t+k ,x) represent the left-hand and right-hand limits of v(t,x) at tk . And
each tk (k = , , . . .) is an impulsive moment satisfying  < t < t < · · · < tk < · · · and
limk→∞ tk = +∞. The boundary condition (.c) is called the Dirichlet boundary condi-
tion or the Neumann boundary condition, which is defined as (a) in []. Similarly as
(i)-(xii) of [], we introduce the following standard notations.

L(R× �),LF

(
[–τ , ]× �;Rn),Q = (qij)n×n >  (< ),Q = (qij)n×n ≥  (≤ ),

Q ≥ Q (Q ≤ Q),Q >Q (Q <Q),λmax(�),λmin(�), |Cn×n|,
∣∣u(t,x)∣∣,

the identity matrix I and the symmetric terms ∗ .

Throughout this paper, we assume (A)-(A) and the following conditions hold:
(A) σ (t, , , i) =  for all i ∈ S.

http://www.advancesindifferenceequations.com/content/2013/1/183
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Remark . The condition |H| =H is not too stringent for a semi-positive definitematrix
H = (hij)n×n ≥ . Indeed, |H| =H if all hij ≥ , ∀i, j.

(A) There exist symmetrical matrices Rj ≥  with |Rj| = Rj, j = ,  such that for any
mode i ∈ S,

trace
[
σT(t, v(t,x), v(t – τ (t),x

)
, i
)
σ
(
t, v(t,x), v

(
t – τ (t),x

)
, i
)]

≤ vT (t,x)Rv(t,x) + vT
(
t – τ (t),x

)
Rv

(
t – τ (t),x

)
.

Similarly as is [, Definition .], we can see from (A) that system (.) has the null
solution as its equilibrium point.

Lemma . [, Lemma ] Let Pi = diag(pi,pi, . . . ,pin) be a positive definite matrix for a
given i, and v be a solution of system (.). Then we have

∫
�

vTPi
(∇ · (D(t,x, v) ◦ ∇pv

))
dx = –

m∑
k=

n∑
j=

∫
�

pijDjk(t,x, v)|∇vj|p–
(

∂vj
∂xk

)

dx

=
∫

�

(∇ · (D(t,x, v) ◦ ∇pv
)TPivdx.

Lemma . (see []) Consider the following differential inequality:{
D+v(t)≤ –av(t) + b[v(t)]τ , t �= tk ,
v(tk) ≤ akv(t–k ) + bk[v(t–k )]τ ,

where v(t) ≥ , [v(tk)]τ = supt–τ≤s≤t v(s), [v(t–k )]τ = supt–τ≤s<t v(s) and v(t) is continuous ex-
cept tk , k = , , . . . , where it has jump discontinuities. The sequence tk satisfies  = t < t <
t < · · · < tk < tk+ < · · · , and limk→∞ tk = ∞. Suppose that
() a > b ≥ ;
() tk – tk– > δτ , where δ > , and there exist constants γ > ,M >  such that

ρρ · · ·ρk+ekλτ ≤ Meγ tk ,

where ρi =max{,ai + bieλτ }, λ >  is the unique solution of the equation λ = a– beλτ ;
then

v(t)≤ M
[
v()

]
τ
e–(λ–γ )t .

In addition, if θ = supk∈Z{,ak + bkeλτ }, then

v(t)≤ θ
[
v()

]
τ
e–(λ–

ln(θeλτ )
δτ

)t , t ≥ .

3 Main results
Theorem . Assume that p > . If the following conditions are satisfied:
(C) there exist a sequence of positive scalars αi, αi (i ∈ S) and positive definite diagonal

matrices Pi = diag(pi,pi, . . . ,pin) (i ∈ S), L, L and Q such that the following LMI

http://www.advancesindifferenceequations.com/content/2013/1/183
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conditions hold:

�i � –

⎛⎜⎜⎜⎝
Ai  (F + F)L + PiA|Ci| PiA|Di|
* Ai  (G +G)L
* * –L 
* * * –L

⎞⎟⎟⎟⎠ > , ∀i ∈ S, (.)

Pi > αiI, ∀i ∈ S, (.)

Pi < αiI, ∀i ∈ S, (.)

where τ̇ (t) ≤ κ <  for all t, and

Ai = –PiAB + αiR +
∑
j∈Sikn

πijPj + α̃i
∑
j∈Siun

Pj +Q – FLF,

Ai = –( – κ)Q – GLG;

(C) mini∈S{ λmin�i
λmaxPi

, λmin�i
λmaxQ } > λmaxR

λminQ
maxi∈S αi ≥ ;

(C) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and
λ – ln(ρeλτ )

δτ
> , where ρ =maxj{,aj + bjeλτ } with aj ≡ (maxk,i

λmax(MkiPiMki)
λminPi

) and
bj ≡ , and λ >  is the unique solution of the equation λ = a – beλτ with
a =mini∈S{ λmin�i

λmaxPi
, λmin�i

λmaxQ } and b = λmaxR
λminQ

maxi∈S αi,
then the null solution of system (.) is stochastically exponentially stable with the conver-
gence rate 

 (λ – ln(ρeλτ )
δτ

).

Proof Consider the Lyapunov-Krasovskii functional

V
(
t, v(t,x), i

)
= Vi +Vi, ∀i ∈ S,

where

Vi =
∫

�

vT (t,x)Piv(t,x)dx =
∫

�

∣∣vT (t,x)∣∣Pi
∣∣v(t,x)∣∣dx,

Vi =
∫

�

∫ 

–τ (t)
vT (t + θ ,x)Qv(t + θ ,x)dθ dx

=
∫

�

∫ 

–τ (t)

∣∣vT (t + θ ,x)
∣∣Q∣∣v(t + θ ,x)

∣∣dθ dx.

(.)

From (A), we have


∣∣f T(v(t,x))∣∣L∣∣f (v(t,x))∣∣ – 

∣∣vT (t,x)∣∣(F + F)L
∣∣f (v(t,x))∣∣

+ 
∣∣vT (t,x)∣∣FLF∣∣v(t,x)∣∣≤ , (.)


∣∣gT(v(t – τ (t),x

))∣∣L∣∣g(v(t – τ (t),x
))∣∣

– 
∣∣vT(t – τ (t),x

)∣∣(G +G)L
∣∣g(v(t – τ (t),x

))∣∣
+ 

∣∣vT(t – τ (t),x
)∣∣GLG

∣∣v(t – τ (t),x
)∣∣≤ . (.)

http://www.advancesindifferenceequations.com/content/2013/1/183
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Denote ζ (t,x) = (|vT (t,x)|, |vT (t – τ (t),x)|, |f T (v(t,x))|, |gT (v(t – τ (t),x))|)T . Let L be the
weak infinitesimal operator such that LV (t, v(t,x), i) = LVi + LVi for any given i ∈ S.
Next, it follows by Lemma ., (A)-(A), (.) and (.) that for t �= tk ,

LV (t) ≤ –
∫

�

ζT (t,x)�iζ (t,x)dx +
∫

�

∣∣vT(t – τ (t),x
)∣∣αiR

∣∣v(t – τ (t),x
)∣∣dx, (.)

where v = v(t,x) is a solution for system (.). �

Remark . Here, we employ some new methods different from those of [, (.)-(.)]
in the proof of [, Theorem .] and [, Theorem .]. Hence, our LMI condition (.) is
more effective than the LMI condition (.) in [, Theorem .] even when system (.) is
reduced to system (.) (see Remark . below).

It is not difficult to conclude from the Itô formula that for t ∈ [tk , tk+),

D+EV (t) ≤ –min
i∈S

{
λmin�i

λmaxPi
,
λmin�i

λmaxQ

}
EV (t) +

(
λmaxR

λminQ
max
i∈S

αi

)[
EV (t)

]
τ
. (.)

Owing to tk – tk– > δτ > τ , we can derive

V (tk)≤
(
max
k,i

λmax(MkiPiMki)
λminPi

)
V
(
t–k
)
+
[
V
(
t–k
)]

τ
. (.)

It follows from (C) that ρk+ekλτ ≤ e(δ–λ)τ eδtk , where ρ = maxj{,aj + bjeλτ } with aj ≡
(maxk,i

λmax(MkiPiMki)
λminPi

) and bj ≡ , and λ >  is the unique solution of the equation λ = a –

beλτ , satisfying λ– ln(ρeλτ )
δτ

> .Moreover, combining (.), (.), (C), (C) and Lemma .
results in

E‖v(t,x)‖ ≤
[
maxi∈S(λmaxPi + λmaxQ)

mini∈S(λminPi)
ρ sup

–τ≤s≤
E
∥∥φ(s)∥∥]e–(λ– ln(ρeλτ )

δτ
)t . (.)

Therefore, we can see by [, Definition .] that the null solution of system (.) is
globally stochastically exponentially stable in the mean square with the convergence rate

 (λ – ln(ρeλτ )

δτ
).

Remark . Although the employed Lyapunov-Krasovskii functional is simple, together
with the condition (A) it simplifies the proof process. Moreover, the obtained LMI-based
criterion ismore effective and less conservative than [, Theorem.], whichwill be shown
in a numerical example of Remark ..

Moreover, if Markovian jumping phenomena are ignored, system (.) is reduced to the
following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv(t,x) = {∇ · (D(t,x, v) ◦ ∇pv(t,x)) –A(v(x, t))[B(v(t,x)) –Cf (v(t,x))

–Dg(v(t – τ (t),x))]}dt + σ (t, v(t,x), v(t – τ (t),x), r(t))dw(t),
for all t ≥ t, t �= tk ,x ∈ �,

v(tk ,x) =Mv(t–k ,x), k = , , . . . ,

(.)

whereM is a symmetrical matrix.

http://www.advancesindifferenceequations.com/content/2013/1/183
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In order to compare with the main result of [], we may as well educe the following
corollary based on Theorem ..

Corollary . If the following conditions are satisfied:

(C*) there exist positive scalars α, α and positive definite diagonal matrices P, L, L
and Q such that the following LMI conditions hold :

–�̃ �

⎛⎜⎜⎜⎝
A∗
  (F + F)L + PA|C| PA|D|
* A∗

  (G +G)L
* * –L 
* * * –L

⎞⎟⎟⎟⎠ < , (.*)

P > αI, (.*)

P < αI, (.*)

where

A∗
 = –PAB + αR +Q – FLF, A∗

 = –( – κ)Q – GLG; (.)

(C*) min{ λmin�̃
λmaxP ,

λmin�̃
λmaxQ } > λmaxR

λminQ
α ≥ ;

(C*) there exists a constant δ >  such that infk∈Z(tk – tk–) > δτ , δτ > ln(ρeλτ ) and
λ – ln(ρeλτ )

δτ
> , where ρ =max{,aj + bjeλτ } with aj ≡ λmax(MPM)

λminP
and bj ≡ , and

λ >  is the unique solution of the equation λ = ã – b̃eλτ with
ã =min{ λmin�̃

λmaxP ,
λmin�̃
λmaxQ } and b̃ = λmaxR

λminQ
α,

then the null solution of system (.) is stochastically globally exponential stable in the
mean square with the convergence rate 

 (λ – ln(ρeλτ )
δτ

).

Remark . In [, Theorem .], R in (A) is assumed to be . In addition, F = G are
also assumed to be . In [, Theorem .], if there exist positive definite diagonal matrices
P, P such that the following LMI holds:

A =

⎛⎜⎝–PAB + PR + P + F
 PA|C| PA|D|

* –I 
* * –I

⎞⎟⎠ < , (C̃)

and other two conditions similar as (C*) and (C*) hold, then the null solution of system
(.) is stochastically globally exponential stable in the mean square.

Note that F
 in (C̃) exercises a malign influence on the negative definite possibility of

matrix A when λminF > .
Indeed, we may consider system (.) with the following parameter:

A =

(
. 
 .

)
, A =

(
 
 

)
, B =

(
. 
 .

)
,

F =G =

(
 
 

)
, G =

(
 
 

)
,

http://www.advancesindifferenceequations.com/content/2013/1/183
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F =

(
. 
 .

)
, C =D =

(
. –.

–. .

)
,

R =

(
. .

. .

)
,

and τ = ., k = .
Nowweusematlab LMI toolbox to solve the LMI (C*), and the result is tmin = . >

, which implies the LMI (C̃) is found infeasible, let alone other two conditions (i.e., (C)
and (C) in [, Theorem .]). However, by solving LMIs, Equation (.*) can be seen in
Page , one can obtain tmin = –. <  and α = ., α = .,

P =

(
. 

 .

)
, L =

(
. 

 .

)
,

L =

(
. 

 .

)
, Q =

(
. 

 .

)
.

As pointed out in Remark . and Remark ., our Theorem . and its Corollary . are
more feasible and less conservative than [, Theorem .] as a result of our new methods
employed in this paper.

Remark . Both the conclusion and the proof methods of Theorem . are different
from those previous related results in the literature (see, e.g., [, ]). Below, we shall give a
numerical example to show that Theorem . is more effective and less conservative than
some existing results due to significant improvement in the allowable upper bounds of
delays.

4 A numerical example
Example  Consider the following CGNN under the Neumann boundary condition:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv = [∇ · (D(t,x, v) ◦ ∇pv(t,x))]dt

–
( a(v) 

 a(v)
)
[
( b(v)
b(v)

)
–Cif (v(t,x)) –Dig(v(t – τ ,x))]dt

+ σ (t, v(t,x), v(t – τ ,x), i)dw(t), i ∈ S = {, , }, t ≥ t, t �= tk ,x ∈ �,
v(tk ,x) =Mkiv(t–k ,x), i ∈ S = {, , },k = , , . . .

(.)

with the initial condition

φ(s,x) =

(
x( – cos(πx)) cos(x – .)e–s

( – x) sin(πx) cos(x – .)e–s

)
, –. ≤ s ≤ , (.)

and the Neumann boundary condition (or the Dirichlet boundary condition), where
τ (t) ≡ τ = ., p = ., v = (v(t,x), v(t,x))T ∈ R, x = (x,x)T ∈ � = {(x,x)T ∈
R : |xj| <

√
, j = , }, a(v) = . + . sin(tx), a(v) = . + . cos(tx), b(v) =

.v + v sin(t + x), b(v) = .v + v cos(t + x), f (v) = g(v) = (.v, .v +
.v sin(tx))T , and

D(t,x, v) =

(
. .
. .

)
, A =

(
. 
 .

)
, A =

(
. 
 .

)
,

http://www.advancesindifferenceequations.com/content/2013/1/183
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B =

(
. 
 .

)
, C =

(
. –.

–. .

)
=D,

C =

(
. –.

–. .

)
=D, C =

(
. –.

–. .

)
=D, (.)

F =

(
 
 

)
=G, F =

(
. 
 .

)
=G, R =

(
. 

 .

)
= R,

Mk
(
r(t)

)
=M =

(
. .

. .

)
, ∀r(t) = i ∈ S = {, , },k = , , . . . .

The two cases of the transition rate matrices are considered as follows:

Case (): � =

⎛⎜⎝–. . .
. –. .
. . –.

⎞⎟⎠ , Case (): � =

⎛⎜⎝–. ? ?
. ? ?
? . ?

⎞⎟⎠ . (.)

In Case (), Sikn = ∅ (the empty set), and hence α̃i
∑

j∈Siun Pj =  and
∑

j∈Sikn πijPj =∑
j∈S πijPj for all i ∈ S = {, , }.
Now we use the Matlab LMI toolbox to solve the LMIs (.)-(.) for Case (), and the

result shows tmin = –. < , and α = ., α = ., α = ., α = .,
α = ., α = .,

P =

(
. 

 .

)
, P =

(
. 

 .

)
,

P =

(
. 

 .

)
, Q =

(
. 

 .

)
,

L =

(
. 

 .

)
, L =

(
. 

 .

)
.

Next, we shall prove that the above data Pi, αi, αi and Q make the conditions (C) and
(C) hold, respectively.
Indeed, by computing, we have λmin� = ., λmin� = ., λmin� = .,

λmaxP = ., λmaxQ = ., λmaxP = ., λmaxP = ., and then a =
mini∈S{ λmin�i

λmaxPi
, λmin�i

λmaxQ } = ., b = λmaxR
λminQ

maxi∈S αi = . ∗ –. Then a > b ≥ , and
hence (C) holds.
Let δ = ., τ = ., and infk∈Z(tk – tk–) > δτ . Solve λ = a – beλτ , and hence

λ = .. Moreover, it follows by direct computation that aj ≡ (maxk,i
λmax(MkiPiMki)

λminPi
) ≡

.. Owing to bj ≡ , we have ρ = maxj{,aj + bjeλτ } = .. Thereby, a direct
computation can derive that δτ – ln(ρeλτ ) = . >  and λ – ln(ρeλτ )

δτ
= . > .

Therefore, it follows from Theorem . that the null solution of system (.) is stochas-
tically exponentially stable with the convergence rate ./ = . (see, Figures -).
In Case (), it is obvious that α̃ = ., α̃ = ., α̃ = .. Solving LMIs (.)-(.) for

Case (), one can obtain tmin = –. < , and α = ., α = ., α = .,

http://www.advancesindifferenceequations.com/content/2013/1/183
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Figure 1 Computer simulations of the states of v1(t,x) and v2(t,x).

Figure 2 Computer simulations of the state v1(t,x).

α = ., α = ., α = .,

P =

(
. 

 .

)
, P =

(
. 

 .

)
,

P =

(
. 

 .

)
, Q =

(
. 

 .

)
,
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Figure 3 Computer simulations of the state v2(t,x).

Table 1 Allowable upper bound of τ and the convergence
rate for Theorem 3.1 in Case (1) and Case (2)

Case (1) Case (2)

Time delays τ 7.75 7.75
Convergence rate 0.0169 0.0165

L =

(
. 

 .

)
, L =

(
. 

 .

)
.

Next, we shall prove that the above data Pi, αi, αi and Q make the conditions (C) and
(C) hold, respectively.
Indeed, we can get by direct computations that λmin� = ., λmin� = .,

λmin� = ., λmaxP = ., λmaxQ = ., λmaxP = ., λmaxP = ., and
then a = mini∈S{ λmin�i

λmaxPi
, λmin�i

λmaxQ } = ., b = λmaxR
λminQ

maxi∈S αi = . ∗ –, and hence
a > b ≥ . So, the condition (C) in Theorem . holds.
Similarly, let δ = ., τ = ., and infk∈Z(tk – tk–) > δτ . Solve λ = a– beλτ , and hence

λ = .. Moreover, it follows by direct computation that aj ≡ (maxk,i
λmax(MkiPiMki)

λminPi
) ≡

.. Owing to bj ≡ , we have ρ = maxj{,aj + bjeλτ } = .. Thereby, a direct
computation can derive that δτ – ln(ρeλτ ) = . >  and λ – ln(ρeλτ )

δτ
= . > .

Therefore, it follows from Theorem . that the null solution of system (.) is stochas-
tically exponentially stable with the convergence rate ./ = ..
Table  shows that the convergence rate decreases when the number of unknown ele-

ments increases.

Remark . Table  shows that the null solution of system (.) (or (.)) is stochastically
globally exponential stable in the mean square for the maximum allowable upper bounds

http://www.advancesindifferenceequations.com/content/2013/1/183
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τ = .. Hence, as pointed out in Remark ., the approach developed in Theorem . is
more effective and less conservative than some existing results ([, Theorem .], []).

5 Conclusions
In this paper, new LMI-based stochastic global exponential stability criteria for delayed
impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks with
partially unknown transition rates and the nonlinear p-Laplace diffusion are obtained, the
feasibility of which can be easily checked by the Matlab LMI toolbox. Moreover, numeri-
cal example illustrates the effectiveness and less conservatism of all the proposedmethods
via the significant improvement in the allowable upper bounds of time delays. For further
work, we are considering how to make the nonlinear p-Laplace diffusion item play a pos-
itive role in the stability criteria, which still remains an open and challenging problem.
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