771 research outputs found

    Optimized operator-splitting methods in numerical integration of Maxwell's equations

    Get PDF
    Optimized operator splitting methods for numerical integration of the time domain Maxwell's equations in computational electromagnetics (CEM) are proposed for the first time. The methods are based on splitting the time domain evolution operator of Maxwell's equations into suboperators, and corresponding time coefficients are obtained by reducing the norm of truncation terms to a minimum. The general high-order staggered finite difference is introduced for discretizing the three-dimensional curl operator in the spatial domain. The detail of the schemes and explicit iterated formulas are also included. Furthermore, new high-order Padé approximations are adopted to improve the efficiency of the proposed methods. Theoretical proof of the stability is also included. Numerical results are presented to demonstrate the effectiveness and efficiency of the schemes. It is found that the optimized schemes with coarse discretized grid and large Courant-Friedrichs-Lewy (CFL) number can obtain satisfactory numerical results, which in turn proves to be a promising method, with advantages of high accuracy, low computational resources and facility of large domain and long-time simulation. In addition, due to the generality, our optimized schemes can be extended to other science and engineering areas directly. © 2012 Z. X. Huang et al.published_or_final_versio

    Fast computation of radar cross-section by fast multipole method in conjunction with lifting wavelet-like transform

    Get PDF
    The fast multipole method (FMM) in conjunction with the lifting wavelet-like transform scheme is proposed for the scattering analysis of differently shaped three-dimensional perfectly electrical conducting objects. As a flexible and efficient matrix compression technique, the proposed method can sparsify the aggregation matrix and disaggregation matrix in real time with compression ratio about 30%. The computational complexity and choice of proper wavelet are also discussed. Numerical simulation and complexity analysis have shown that the proposed method can speed up the aggregation and disaggregation steps of the FMM with lower memory requirements. © 2010 The Institution of Engineering and Technology.postprin

    Adaptive frequency sweep analysis for electromagnetic problems using the Thiele interpolating continued fractions

    Get PDF
    A direct rational approximation method based on Thiele interpolating continued fractions theory is proposed for fast frequency sweep analysis of electromagnetic problems. And an adaptive algorithm is also formed. Compared with the conventional rational approximation method, the proposed method can get a rational approximation directly without a great number of matrix inverse computations and doesn't need to allocate much memory for high derivatives of the dense impedance matrix. Meanwhile, the computation of surface currents by continued fractions can be sped up as compared with the traditional rational approximation. Numerical simulations for broad band scattering analysis of different shaped objects are discussed to shown the effectiveness of the present method. © 2010 IEEE.published_or_final_versionThe 2nd International Conference on Education Technology and Computer (ICETC 2010), Shanghai, China, 22-24 June 2010. In Proceedings of 2nd ICETC, 2010, v. 5, p. 126-12

    Flexible and Accurate Simulation of Radiation Cooling with FETD Method

    Get PDF
    Thermal management and simulation are becoming increasingly important in many areas of engineering applications. There are three cooling routes for thermal management, namely thermal conduction, thermal convection and thermal radiation, among which the first two approaches have been widely studied and applied, while the radiation cooling has not yet attracted much attention in terrestrial environment because it usually contributes less to the total amount of thermal dissipation. Thus the simulation method for radiation cooling was also seldom noticed. The traditional way to simulate the radiation cooling is to solve the thermal conduction equation with an approximate radiation boundary condition, which neglects the wavelength and angular dependence of the emissivity of the object surface. In this paper, we combine the heat conduction equation with a rigorous radiation boundary condition discretized by the finite-element time-domain method to simulate the radiation cooling accurately and flexibly. Numerical results are given to demonstrate the accuracy, flexibilities and potential applications of the proposed method. The proposed numerical model can provide a powerful tool to gain deep physical insight and optimize the physical design of radiation cooling

    Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Get PDF
    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Cardiovascular Outcomes in Acute Coronary Syndrome and Malnutrition: A Meta-Analysis of Nutritional Assessment Tools

    Get PDF
    Background: There is emerging evidence that malnutrition is associated with poor prognosis among patients with acute coronary syndrome (ACS). // Objectives: This study seeks to elucidate the prognostic impact of malnutrition in patients with ACS and provide a quantitative review of most commonly used nutritional assessment tools. // Methods: Medline and Embase were searched for studies reporting outcomes in patients with malnutrition and ACS. Nutritional screening tools of interest included the Prognostic Nutrition Index, Geriatric Nutritional Risk Index, and Controlling Nutritional Status. A comparative meta-analysis was used to estimate the risk of all-cause mortality and cardiovascular events based on the presence of malnutrition and stratified according to ACS type, ACS intervention, ethnicity, and income. // Results: Thirty studies comprising 37,303 patients with ACS were included, of whom 33.5% had malnutrition. In the population with malnutrition, the pooled mortality rate was 20.59% (95% CI: 14.95%-27.67%). Malnutrition was significantly associated with all-cause mortality risk after adjusting for confounders including age and left ventricular ejection fraction (adjusted HR: 2.66, 95% CI: 1.78-3.96, P = 0.004). There was excess mortality in the group with malnutrition regardless of ACS type (P = 0.132), ethnicity (P = 0.245), and income status (P = 0.058). Subgroup analysis demonstrated no statistically significant difference in mortality risk between individuals with and without malnutrition (P = 0.499) when using Controlling Nutritional Status (OR: 7.80, 95% CI: 2.17-28.07, P = 0.011), Geriatric Nutritional Risk Index (OR: 4.30, 95% CI: 2.78-6.66, P < 0.001), and Prognostic Nutrition Index (OR: 4.67, 95% CI: 2.38-9.17, P = 0.023). // Conclusions: Malnutrition was significantly associated with all-cause mortality risk following ACS, regardless of ACS type, ethnicity, and income status, underscoring the importance of screening and interventional strategies for patients with malnutrition

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
    • …
    corecore