15 research outputs found

    Sistema especialista para aplicação do composto de lixo urbano na agricultura.

    Get PDF
    Composto de lixo urbano. Compostagem. Grau de maturação do composto. Composto de lixo como adubo e corretivo do solo. Coleta seletiva de lixo. Metais pesados. Contaminação por patógeno. Sistemas especialistas. Aplicação deste sistema especialista.bitstream/CNPTIA/9947/1/doc22.pdfAcesso em: 29 maio 2008

    The VISIR+ Project – Preliminary results of the training actions

    Get PDF
    Experimental competences allow engineering students to consolidate knowledge and skills. Remote labs are a powerful tool to aid students in those developments. The VISIR remote lab was considered the best remote lab in the world in 2015. The VISIR+ project main goal is to spread VISIR usage in Brazil and Argentina, providing technical and didactical sup- port. This paper presents an analysis of the already prosecuted actions regarding this project and an assessment of their impact in terms of conditioning factors. The overall outcomes are highly positive since, in each Latin American Higher Education Institution, all training actions were successful, the first didactical implementations were designed and ongoing in the current semester. In some cases, instead of one foreseen implementation, there are several. The most statistically conditioning factors which affected the outcomes were the pre-experience with re- mote labs, the pre-experience with VISIR and the training actions duration. The teachers’ per- ceptions that most conditioned their enrollment in implementing VISIR in their courses were related to their consciousness of the VISIR effectiveness to teach and learn. The lack of time to practice and discuss their doubts and the fulfillment of their expectations in the training actions, also affected how comfortable in modifying their course curricula teachers were.info:eu-repo/semantics/acceptedVersio

    Una Federación de Laboratorios Remotos VISIR a través del Proyecto PILAR

    Get PDF
    Este documento describe cómo un nuevo proyecto Erasmus+, PILAR (Plataform Integration of Laboratories base don the Architecture of visiR), está siendo desarrollado y cómo la puesta en marcha del partenariado y del proyecto está reforzando la red VISIR (Virtual Instrument Systems in Reality) y el Grupo de Interés Especial de VISIR bajo el Consorcio de Laboratorios online (GOLC - Global Online Laboratory Consortium) de la Asociación Internacional de Ingeniería Online (IAOE - International Association of Online Engineering. La Universidad Española para la Educación a Distancia (UNED) coordina este proyecto que tiene como objetivo federar los sistemas existentes (o nuevos) con el fin de utilizar los recursos de manera más efectiva y eficiente, haciendo transparente para el usuario final la elección de los recursos compartidos.info:eu-repo/semantics/publishedVersio

    Experimenting in PILAR Federation: a Common Path for the Future

    Get PDF
    The PILAR (Platform Integration of Laboratories based on the Architecture of visiR) Erasmus Plus project started in September 2016 and will last three years. The core of the PILAR project is the VISIR remote laboratory —Virtual Instruments System In Reality—. The project aims for a federation of five of the existing VISIR nodes, sharing experiments, capacity and resources among partners, and to provide access to VISIR remote lab, through PILAR consortium, to students from other educational institutions. PILAR will be the framework from which management tasks will be performed and laboratories/experiments will be shared. PILAR will also foster the Special Interest Group of VISIR under the Global Online Laboratory Consortium (GOLC) of the International Association of Online Engineering (IAOE).info:eu-repo/semantics/publishedVersio

    Chapter 1

    Get PDF
    Experimenting is fundamental to the training process of all scientists and engineers. While experiments have been traditionally done inside laboratories, the emergence of Information and Communication Technologies added two alter-natives accessible anytime, anywhere. These two alternatives are known as virtual and remote labs, and are sometimes indistinguishably referred as online labs. Sim-ilarly to other instructional technologies, virtual and remote labs require some ef-fort from teachers in integrating them into curricula, taking into consideration sev-eral factors that affect their adoption (i.e. cost) and their educational effectiveness (i.e. benefit). This chapter analyses these two dimensions and sustains the case where only through international cooperation it is possible to serve the large num-ber of teachers and students involved in engineering education. It presents an ex-ample in the area of Electrical and Electronics Engineering, based on a remote lab named Virtual Instruments System in Reality, and it then describes how a number of European and Latin-American institutions have been cooperating under the scope of an Erasmus+ project2, for spreading its use in Brazil and Argentina.info:eu-repo/semantics/publishedVersio

    Spreading remote lab usage: A system — A community — A Federation

    Get PDF
    Experiments have been at the heart of scientific development and education for centuries. From the outburst of Information and Communication Technologies, virtual and remote labs have added to hands-on labs a new conception of practical experience, especially in Science, Technology, Engineering and Mathematics education. This paper aims at describing the features of a remote lab named Virtual Instruments System in Reality, embedded in a community of practice and forming the spearhead of a federation of remote labs. More particularly, it discusses the advantages and disadvantages of remote labs over virtual labs as regards to scalability constraints and development and maintenance costs. Finally, it describes an actual implementation in an international community of practice of engineering schools forming the embryo of a first world wide federation of Virtual Instruments System in Reality nodes, under the framework of a project funded by the Erasmus+ Program.info:eu-repo/semantics/publishedVersio

    Thermal decomposition and stability of [Fe(eta(4)-enone)(CO)(2)L] complexes (L=CO and PPh3)

    No full text
    The compounds [Fe(bda)(CO)(2)L] and [Fe(ch)(CO)(2)L], (bda=benzylideneacetone; ch=chalcone; L=CO, PPh3) were investigated by thermogravimetry and derivative thermogravimetry (TG and DTG). The fragmentation patterns suggest that the iron atom protects the enone fragment, so that the organic ligands break up with the loss of the pendant aromatic rings

    Investigação por espectroscopia Mössbauer de compostos de ferro(0) contendo dissulfeto de carbono

    No full text
    Neste trabalho são apresentados resultados proveniente da aplicação da Espectroscopia Mössbauer na investigação de compostos carbonilferro contendo o ligante CS2, [Fe(CO)2(h²-CS2 )(PPh3)2] e [Fe(CO)2(h²-CS2) {P(OPh)3}2]. Nas sínteses dessas espécies, a utilização de TMNO (trimetilaminóxido) como agente descarbonilante mostrou-se bastante eficiente, superando aquelas descritas na literatura que requerem inclusive preparação de compostos precursores. Os resultados de espectroscopia Mössbauer, juntamente com dados no IV e de RMN de 31P, foram conclusivos na proposição da geometria octaédrica distorcida ao redor do átomo de ferro para ambos os compostos investigados.The one pot syntheses of the compounds of general formula [Fe(CO)2(h²-CS2 )(L)2] (L = PPh3, P(OPh)3), were carried out in high yields by using trimethylaminoxide (TMNO) as decarbonilating agent. The compounds were investigated by Mössbauer spectroscopy which afforded indicative data of an octahedral geometry around the iron atom in the species [Fe(CO)2(h²-CS2)(PPh3) 2] e [Fe(CO)2(h²-CS2 ){P(OPh)3}2].Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Peers' evaluation of a reconfigurable IEEE1451.0-compliant and FPGA-based weblab

    No full text
    It is already more than 10 years that weblabs are seen as important resources to provide the experimental work required in engineering education. Several weblabs have been applied in engineering courses, but there are still unsolved problems related to the development of their infrastructures. For solving some of those problems, it was implemented a weblab with a reconfigurable infrastructure compliant with the IEEE1451.0 Std. and supported by Field Programmable Gate Array (FPGA) technology. This paper presents the referred weblab, and provides and analyses a set of researchers' opinions about the implemented infrastructure, and the adopted methodology for the conduction of real experiments
    corecore