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Abstract  Experimenting is fundamental to the training process of all scientists 

and engineers. While experiments have been traditionally done inside laboratories, 

the emergence of Information and Communication Technologies added two alter-

natives accessible anytime, anywhere. These two alternatives are known as virtual 

and remote labs, and are sometimes indistinguishably referred as online labs. Sim-

ilarly to other instructional technologies, virtual and remote labs require some ef-

fort from teachers in integrating them into curricula, taking into consideration sev-

eral factors that affect their adoption (i.e. cost) and their educational effectiveness 

(i.e. benefit). This chapter analyses these two dimensions and sustains the case 

where only through international cooperation it is possible to serve the large num-

ber of teachers and students involved in engineering education. It presents an ex-

ample in the area of Electrical and Electronics Engineering, based on a remote lab 

named Virtual Instruments System in Reality, and it then describes how a number 
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of European and Latin-American institutions have been cooperating under the 

scope of an Erasmus+ project2, for spreading its use in Brazil and Argentina.  

Keywords—engineering education; remote labs; VISIR; community of practice; online labs fed-

eration 

1. Introduction 

Remote labs stand for physical apparatus connected to computer-controlled in-

struments able to be remotely accessed for carrying out real-world experiments. 

This definition leads to the expression “remote experimentation” which denotes 

the type of experiments that can be done in remote labs, in opposition to “virtual 

experiments”, or “simulations”, which can be done in “virtual labs”. For a com-

plete understanding, hands-on labs refer to physical spaces where users perform 

experiments by directly manipulating the instruments and/or apparatus under ex-

perimentation. The more recent expression “hybrid labs” refers to a sort of envi-

ronment where parts of the apparatus under experimentation and/or the instru-

ments connected to those apparatus are real, and other parts are modeled, i.e. 

correspond to mathematical and data models running on a computer. These two 

parts interact during the course of an experiment, hence the word “hybrid”.  
In historical terms, the value of experimentation in Science has long been rec-

ognized. For instance, the oldest Scientific Society in the world, the Royal Socie-

ty, adopted the motto 'Nullius in verba' to “… express the determination of its Fel-

lows … to verify all statements by an appeal to facts determined by experiment.” 

[1]. This spirit has also long been part of the training process of both scientists and 

engineers, as reported by Feisel and Rosa (2005) in [2]. In particular, these authors 

trace back the value of combining theory and practice to the very first engineering 

school in the United States, the US Military Academy, founded at West Point, NY 

in 1802 [2, p. 122]. Although majorly focusing on the role of hands-on laborato-

ries in undergraduate engineering education, Feisel and Rosa (2005) also account 

for the provisions of both virtual and remote laboratories to that role. 

The particular aspects of combining hands-on, simulated and remote laborato-

ries into Science, Engineering, Technology and Mathematics (STEM) education 

are well discussed in [3] [4] [5]. These papers also acknowledge virtual and re-

mote labs to be the two most recent environments where students may acquire and 

practice some of their experimental competences. Froyd et al. (2012) corroborate 

                                                             

2 "This project has been funded with support from the European Commission. This publication 
reflects the views only of the authors, and the Commission cannot be held responsible for any 
use which may be made of the information contained therein" 
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this statement by rightfully classifying simulations and remote labs as part of one 

of the five major shifts in 100 years of engineering education, in particular of its 

5th major shift, i.e. the influence of Information and Communication Technologies 

(ICT) in engineering education [6]. 

But while the generalized use of simulations in engineering education followed 

the widespread use of computers (70’s), remote labs have a more recent history, 

mainly powered by the emergence of the World Wide Web (WWW) (90’s) [7]. 

Other aspects impairing the large adoption of remote labs, when compared to vir-

tual labs, are the associated development and maintenance costs, and scalability 

constraints [8]. In this chapter, we first briefly expand on this problematic and 

then present one strategy for spreading the use of remote labs in Brazil and Argen-

tina, through an international cooperation project. This project involves a number 

of European and Latin-American higher education institutions, and is supported 

by the Erasmus+ program, under the Capacity Building in Higher Education ac-

tion. 

The remainder of the chapter is structured as follows: section 2 provides some 

background on the use of virtual versus remote labs, while also defining one par-

ticular application domain – experiments with electrical and electronic circuits; 

section 3 focus on one particular remote lab serving this domain; sections 4 and 5 

deal with two crucial aspects for spreading the use of remote labs, i.e. nurturing a 

strong Community of Practice (CoP) and federating existing remote labs; section 6 

presents two ongoing international projects around one particular remote lab: one 

project aiming to spread its community of practice in Brazil and Argentina and the 

other aiming to federate a number of existing nodes in Europe; and, finally, sec-

tion 7 presents the conclusions and future perspectives. 

2. Background 

2.1. Scalability constraints 

One possible direction for analyzing the scalability problem of virtual versus re-

mote labs is to look into the dimension and hierarchical structure of an Engineer-

ing School or Faculty, while focusing on the practical educational component. At 

the very basis one has a single experiment. The dimensional aspect can be reduced 

to 1:n for simplicity purposes. Regarding hierarchy, one can consider: experiment 

– laboratory – course – degree – school – institution. Typically, n experiments are 

done in a laboratory, usually within a specific scientific domain or sub-domain, 

e.g. an electrical machines lab may accommodate basic electromagnetic experi-

ments to demonstrate the basic principles of electrical machines, such as genera-

tors / motors (machines with rotating or moving parts) and transformers (non-

rotating machine) to more specific experiments such as the electric efficiency of a 
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motor coupled to a generator, or linear induction motors. A laboratory can then 

support one course or several courses. Those courses can be part of a single degree 

or belong to different degrees. An engineering school usually offers several de-

grees, e.g. Mechanical Engineering, Electrical Engineering, Civil Engineering, or 

Chemical Engineering, among other engineering degrees. Finally, one institution 

may have one single engineering school or several ones, depending on its dimen-

sion. An example could be a traditional university in Europe, located in a single 

city, with a single campus, or –in opposition– a federal university, in Brazil, with 

campuses located in different cities pertaining to the same state. Table 1.1 summa-

rizes this simple overview. 

Another dimensional aspect concerns the size of each heading, e.g. the student 

population attending one degree. One engineering school may offer more tradi-

tional degrees, e.g. electrical engineering with a numerus clausus of 1-2 hundred, 

alongside with more specific degrees, e.g. mechatronics or engineering cybernet-

ics, which may just admit 20-30 new students every year. An example of this het-

erogeneous scenario is described in Marques et al. (2014), which analyzes applica-

tion case studies of a particular remote lab [11]. In specific, the topic covered by 

that remote lab lasts from a minimum of 3 to a maximum of 14 weeks, while the 

number of students enrolled in the different courses ranges from 47 to 574 [11, p. 

153].  

This brief analysis paves the way to the scalability problem of virtual versus 

remote labs. While, for instance, one of the most widely known virtual labs in the 

whole world, i.e. the PhET Interactive Simulations, from the University of Colo-

rado - US, reports (in 2013) over one hundred million (100,000,000) simulations 

done, after a period of approximately 10 years [12]3, a particular remote-

controlled laboratory, considered the best one in its category4, registered thirteen 

thousand accesses (13,000) in 2015, for a period of approximately 8 years [13]. To 

make it comparable, one user access to the Virtual Instruments System in Reality 

(VISIR) usually accounts for 1 to 10 experiments, i.e. every time a user clicks on 

the “Perform Experiment” button, one real, remote-experiment is done, hence the 

total number of experiments may be around 100,000 for the recorded number of 

accesses. Additionally, the numbers reported in [13] refer to 4 different VISIR 

nodes (i.e. servers), while the PhET Interactive Simulations are delivered through 

a single web location. Finally, VISIR supports remote experiments with electrical 

and electronic circuits (one specific topic, within electrical and electronics engi-

neering), while PhET Interactive Simulations cover several scientific domains like 

Physics, Chemistry Biology, and Mathematics, among others.  

 

                                                             

3 The PhET Interactive Simulations website, located at https://phet.colorado.edu, reports 
360 million accesses in 06.06.2016. 
4 According to the Global Online Laboratory Consortium (GOLC), which granted this award, 
on its 1st edition (2015), to VISIR. 
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Table 1 A simple overview of the dimension and hierarchy levels related to engineering schools  

 1 n 

Experiment May range from a few minutes to a 

complete class. Usually the number of 

experiments done in a single class de-

pends on the degree year. Initial years 

may accommodate more experiments 

due to their relative simplicity and more 

advanced years may imply experiments 

that take more time to complete. The 

situation of experiments taking more 

than one class to complete is rare. 

A set of experiments may form one class 

(one lab script), span over two or more 

classes, or form one comprehensive 

module about a specific topic (e.g. “In-

troduction to DC circuits” may have 10-

15 experiments that will take approxi-

mately 2-4 weeks to complete). One 

module may take more or less time de-

pending of being part of the core scien-

tific degree area or not. 

Laboratory A laboratory may serve one course or 

several courses depending on its level 

(basic, intermediate, advanced). An ex-

ample of a basic laboratory could be one 

allowing introductory experiments with 

electric circuits. An example of an ad-

vanced laboratory could be an “OptoE-

lectronic Lab”. 

Although sometimes several laboratories 

are needed to support one single course 

(large number of classes, classes from 

different courses requiring the same la-

boratory, etc.), the usual situation is that 

a single degree often requires the sup-

port of several unique laboratories. 

Course The basic “educational unit” in many 

educational institutions. Each course 

typically comprises a number of contact 

hours, divided into theoretical and prac-

tical ones, and non-contact hours. 

In a typical semester scenario, each de-

gree usually comprises 4 to 6 courses, 

depending on the number of European 

Credit Transfer System (ECTS) units. 

Degree One degree may range from 6 semesters 

(180 ECTS) to 4 semesters (120 ECTS) 

depending on its level: undergraduate 

(BSc) or graduate (MSc). The number of 

students attending one degree varies 

quite much, depending on its scope 

(general, specific) and its level. Taking 

the example of the Polytechnic of Porto 

– School of Engineering, one degree 

may admit 20 new students (e.g. MSc in 

Computing Engineering and Medical In-

strumentation) or 210 (e.g. BSc on In-

formatics Engineering). 

The number of degrees offered, in sim-

ultaneous, by a single school depends 

upon several factors: geographical loca-

tion, institutional history, type of institu-

tion (e.g. university / polytechnic), etc. 

Taking the same example, the Polytech-

nic of Porto – School of Engineering of-

fers 14 degrees (undergraduate) and 12 

masters (graduate). It is the number of 

degrees running at the same time that 

provides an idea of the school size, i.e. 

number of students, teachers, staff, la-

boratories, etc.  

School A school’s size varies quite significant-

ly. Taking the total graduate engineering 

enrollment numbers published in [9], it 

may range from 88 (Baylor University, 

Waco, TX, ranked #118) to 7,504 

(Georgia Institute of Technology, Pasa-

dena, CA, ranked #7), which means a 

scale factor of 85. 

One institution may have one or more 

Engineering and/or Technological 

schools. One possible example comes 

from the Polytechnic University of Cata-

lonia (UPC), Spain, which aggregates 12 

STEM-related schools [10]. 
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Although the observable simulated-to-remote experiment ratio of this example 

(in the range of 1:1,000) may be considered as just one possible case, non-

representative of all possible comparative cases, the fact is that one simulation 

corresponds to running a given number of code lines, which can either occur at the 

server or client-side, depending on the technology used. A server with a pro-

cessing power of hundreds to thousands of Millions of Instructions Per Second 

(MIPS) can thus deliver many simulations per second, whereas the time duration 

of a remote experiment is dictated by its physical nature. In the electrical and elec-

tronic domain, these experiments may typically take less than a second to com-

plete [14]. However, one may quickly think of other experiments that may take 

several minutes to complete in the real world (e.g. check relationships between 

volume and amount of solute to solution concentration) and only a few seconds to 

simulate (e.g. https://phet.colorado.edu/en/simulation/concentration). 

A final note on this topic concerns the access/delivery type of a remote versus a 

virtual lab. A remote lab can either work interactively or in a batch mode [15]. In 

the batch mode, a remote lab receives a request from a user, setups the experi-

ment, runs it, and then sends the result(s) to the user. In the interactive mode, one 

single user is in control of the entire lab for the duration of a pre-defined time slot. 

There are remote labs that work on the batch mode, interactive mode, or both. An 

example would be a remote telescope. In the batch mode, a user defines a particu-

lar set of coordinates and filter lens and submits the request to the lab. The lab will 

accommodate the request on the first possible time frame and then send the re-

sult(s) to the user. In the interactive mode, a user will remotely control the tele-

scope for e.g. one hour, changing its parameters in real-time, and obtaining the re-

sults in real-time.  

2.2. Development and maintenance costs 

The topic of development and maintenance costs, applied to virtual and remote 

labs, may be divided into its software and hardware components. While a virtual 

lab typically consists of a server (the hardware component) running the simula-

tions (the software component), a remote lab may include more than one server, as 

illustrated in [16], the whole experimental apparatus –these two parts forming the 

hardware component–, and the several software layers that form the interface be-

tween the remote user and the apparatus under experimentation. The larger num-

ber of parts forming the hardware and software components of a remote lab, and 

the possible existence of consumables, are just two supporting evidences that re-

mote labs present higher development and maintenance costs than virtual labs.  

These higher costs, however, sustain the advantages of using remote experi-

ments, in opposition to just using simulations, in the following cases: 
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 Simulation results may be quite different from the results of real physical ex-

periments, for instance in mechanical engineering influences like vibration, 

torque, and friction cannot be studied and understood so well. 

 In order to approach simulation results to real physical experiment results, de-

velopers try to improve the accuracy of mathematical and data models. Howev-

er, this effort has two main drawbacks: (i) it implies higher development costs 

and (ii) higher computational power, either from the server or the client side. 

Concerning (i) one could consider the cost of placing online a simple real ex-

periment of a driving motor coupled to a load, versus the cost of developing the 

most accurate model accounting for all physical variables present in this system 

and its environment (temperature, humidity, etc.). Respecting (ii), present m-

learning scenarios, i.e. the use of mobile hand-held devices for teaching and 

learning purposes, still do not account for the possibility to run highly demand-

ing applications, for two main reasons: a) very large applications require too 

much memory and time to download, and b) hand-held devices often present 

less computational power than portable computers. 

On the other side, there are areas where the whole development is based on 

simulations (e.g. Systems-on-a-Chip), and the real experiments are the way to test, 

but not to develop. So in any case, both methods are needed in any solid engineer-

ing training.  

3. The VISIR system 

VISIR is a remote laboratory for wiring and performing experiments with elec-

trical and electronic circuits. Basically, it replicates a laboratory workbench 

equipped with a digital multimeter, a triple DC power supply, a two-channel oscil-

loscope, a signal generator, and a solderless breadboard, similar to the one illus-

trated in Figure 1. This sort of workbench is similar in all engineering schools and 

faculties, for experimenting electrical and electronic circuits. A stack of boards 

acting simultaneously as a component store and a reconfigurable matrix, able to 

interconnect the components and the test & measurement instruments, emulates 

the solderless breadboard. Figure 2 depicts a VISIR system based on PXI-

instruments. The basic characteristics of the VISIR platform were initially de-

scribed by Gustavsson (2001) in [17] and then further explained in [18] [19] [20] 

[21] [22] [23] [24].  
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Fig. 1 A typical laboratory workbench for performing experiments with electrical and electronic 

circuits 

 

If we consider the remote lab itself we can highlight some innovative aspects. 

Based on the interaction of a simulation of real equipment and real instruments at 

distance, VISIR creates a real electronic lab environment to the student, which can 

be accessed at any time and from anywhere as long as the student has a PC con-

nected to Internet [25]. Within such environment, students interact with real in-

struments and electric / electronic components. They adjust the instruments and 

wire the circuits with their PC-mouse; then, the lab sends the measurement results 

to them, on their PC-screen. Students can also control stimulus (e.g. power supply 

voltages and input signals), using the PC-mouse.  
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Fig. 2 Hardware component of the VISIR system – version based on PXI instruments 

 

As a platform system, VISIR has its own web interface in which the lab con-

tents are arranged and through which they are accessed. It contains many access 

and administration features such as: registration, log-in, booking, account types, 

etc. The availability of the lab contents depends on the user account type. Each us-

er account type has its own features, privileges and limits. Some universities have 

integrated VISIR into their own Learning Management System (LMS), and/or 

their Remote Lab Management System (RLMS), allowing the use of the provided 

LMS services besides the lab work to create a rich integrated online educational 

platform. So, VISIR may be considered as a remote workbench, equipped with the 

same instruments that exist in a hands-on laboratory for conducting experiments 

with electric and electronic circuits. These workbenches are similar to each other, 

no matter of what part of the world they are being used for supporting lab classes 

with such circuits. This means VISIR has a universal and familiar interface that 

facilitates its usage. Its limited scope comes as an advantage, because all users 

immediately know what they are interacting with, either being students, teachers, 

or project partners.  
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4. Community of practice (CoP) 

In brief, a CoP is a group of people informally bound together by shared exper-

tise, a set of problems, or interest in a topic or fulfillment of goals [26]. In addi-

tion, a CoP focuses on sharing best practices and creating new knowledge to ad-

vance a domain of professional practice.  

The formation of a CoP around VISIR was inspired by general discussions 

around the following question: “What is the added value of Remote Experimenta-

tion to Education?”. This question arose in a former collaborative research project 

named Remote Experimentation Network – Yielding an Inter-university Peer-to-

Peer e-service (RexNet-yippee), which involved several Higher Education Institu-

tions (HEI) from Europe and Latin America (LA) [27]. Although not completely 

answered, this question was partially addressed by the simple equation presented 

on Figure 3. In face of the difficulty in reaching a precise quantitative formula 

able to compute such added value, the proposed qualitative formula was simple 

enough to point directions on how to increase it. In simple terms, if one increases 

the educational value of a given remote experiment and, simultaneously, decreases 

its development and maintenance costs, then the resulting added value will in-

crease. 

 

 

Fig. 3 A simple formula for evaluating the added value of remote experimentation to education 

[15] 
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The two guidelines suggested in the formula for increasing the educational val-

ue are in line with the objectives of a CoP. These same guidelines form part of a 

project proposal (VISIR+) submitted to the Erasmus+ program, for enlarging a 

CoP around VISIR with European HEI that already have this system and a number 

of Latin American HEI, which have a rich experience on the use of remote exper-

imentation, but do not have VISIR. An important aspect that needs to be high-

lighted at this stage is that such collaboration implies a shared knowledge and in-

terest in a given scientific area. In the case of VISIR+, this concerns the teaching 

and learning of electric / electronic circuits’ theory and practice.  

The CoP around VISIR actually started as a Special Interest Group (SIG) of the 

International Association for Online Engineering (IAOE), circa 2006. While ini-

tially gathering researchers interested in enhancing and spreading the VISIR sys-

tem [18], it soon started to benefit from the input of a larger number of users, i.e. 

from teachers and students, and effectively growing into a CoP. The following list 

presents some of the results achieved by this CoP, in the past 10 years: 

 A number of technical improvements in the VISIR hardware (the relay matrix) 

and software (the user interface) directly resulting from the received user feed-

back [11] [28]. 

 Developing a cheaper and equally reliable platform based on LXI-compatible 

instruments [29] [30]. 

 Outreaching a larger number of students and teachers, effectively helping in 

expanding the existing CoP. So far, approximately 50 teachers and 5,000 stu-

dents have used VISIR, in particular considering its use in a Massively Open 

Online Course (MOOC) developed by the Spanish National Distance Education 

University (UNED) [31]. 

 Evidence of collaborative episodes involving teachers and students from differ-

ent world regions, namely from Europe, Latin America, Middle East, and Aus-

tralia [32] [33] [34] [35] [36]. 

But, in order to effectively support an even larger community, the simple exist-

ence of several VISIR nodes is not enough. The reasoning is simple and implies 

two directions: number of available experiments and number of students and 

teachers served in simultaneous. Considering all the experiments done with elec-

trical and electronic circuits, in a single semester, it is clear that, even with a large 

relay matrix, one single VISIR system is unable to serve one single school. Con-

sidering a simple, yet widely performed experiment like an RC low-pass filter, it 

is obvious that one single VISIR system is unable to serve all engineering schools. 

The solution to this scalability problem is presented in the next section.  
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5. A federation of VISIR nodes 

The two other guidelines suggested in the formula for decreasing the develop-

ment and maintenance costs of remote labs are better understood within the con-

ceptual definition of a federation. When sharing experiments, institutions may 

choose to: (i) simply open their access to anyone hitting the webpage where they 

are located; (ii) disseminate their existence (and access to) through a repository; or 

(iii) join a federation that allows some sort of Single Sign-on (SSO) facility. Ex-

amples of (i) are the Control System Online Lab, developed by Jim Henry and 

hosted by the University of Tennessee at Chattanooga, US [37], or any VISIR sys-

tem, when accessing the demo page and using the guest login [38]. Examples of 

(ii) are the European Go-Lab portal, which provides access to hundreds of online 

labs [39], or the Lab2Go portal [40]. Finally, examples of (iii) are the Labshare in-

stitute [41], or the iLab Service Broker [42]. Unfortunately, option (i) does not re-

ally provide any sort of rewarding mechanism, as there is no structured way to ac-

cess other remote experiments. Although the possibility to search the web for any 

particular, open, remote experiment still exists, it is a random, time-consuming 

process, where the guarantee of a quality-of-service (e.g. the remote experiment 

remains open for an entire course duration) is virtually zero. Option (ii) is more 

structured and facilitates the task of searching and using a given remote experi-

ment. However, it is up to the owner of the repository to set up the rules defining 

how a given remote experiment is made publicly available and what sort of ser-

vice level must be provided. Usually, by joining such a repository, a given institu-

tion will have to provide but also be allowed to use remote experiments provided 

by other institutions. In some cases, the repository is completely open, i.e. all the 

remote experiments listed in the repository are open, often with some sort of re-

striction (limited access time, diminished complexity, etc.). Again, this sort of 

sharing presents more advantages to users rather than to providers, i.e. the two di-

rections (provider-client and client-provider) are not balanced in terms of benefits.  

A federation implies a different quality of service level, in relation to a reposi-

tory. It offers a server or now often cloud based user and lab management in one 

system. Administrators can define lab and user groups, and their roles, and offer 

pre-defined access types to the online labs and remote experiments. Via special 

web-services (smart gateways [43]) these systems can be connected to an LMS by 

single-sign-on, if the LMS supports the Learning Tools Interoperability (LTI) pro-

tocol. The lab owner in every case defines the use policy (time-frames, actual 

number of users etc.) of his lab. But he accepts that all (usually identified) users, 

who are registered into the lab group of the federation to which his lab is connect-

ed to, have access to his experiments. 

Orduña et al. (2015) expose the advantages of a federated system [43] concern-

ing the experiments shareability: “once students of a particular institution can ac-
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cess through the Internet to a particular laboratory, it can also be accessed by 

students of other universities”. This advantage is bidirectional through RLMSs in 

which a federation is established: two institutions providing the same remote lab –

or the same practical experiment from a specific remote lab– can balance their cli-

ents/users load. This feature, inherit to RLMSs, improves the users’ immersion in 

the remote lab environment due to the improved time response.  

Laboratory time response depends on several factors: circuit, frequency, num-

ber of measuring requests, etc. In any case, there is a physical constraint to the 

number of concurrent users performing measurements; threshold limit value is 60 

in VISIR [44]. Even though it is unlikely that all connected users perform meas-

urements simultaneously –laboratory time is mostly allocated to circuit assem-

bling and configuring the equipment– much more than for measuring, a balanced 

users’ load for some particular experiments in strong demand, would provide a 

better time-response, and hence a better immersion. 

This particular aspect is visible through the following sequence of experiments, 

done with a single VISIR node (Figures 4, 5, and 6). 

 

Fig. 4 Unique user, time response in milliseconds; 5 minutes in continuous mode 

  

 

Fig. 5 Five users simultaneously measuring, sample time response in milliseconds; 5 minutes in 

continuous mode 
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Fig. 6 Over 20 users simultaneously measuring, sample time response in milliseconds; 5 minutes 

in continuous mode 

 

The sequence shows the increasing delay in serving an increasing number of 

simultaneous users, based on the batch operation mode of VISIR. The number of 

potential users, in a single engineering school, presented in section II, helps to un-

derstand the limitations of having a VISIR node operating in an isolated fashion.  

Another approach to build a VISIR federation is to carry it out following a stra-

tegical design of the practical experiments offered by the different VISIR nodes. 

Every VISIR node of the community could share a “percentage” of its matrix to 

the VISIR federation. If every VISIR node offers a rich and broad specialized 

block of experimental practices (i.e. Node 1: Basic circuits and electrical laws; 

Node 2: Diodes experimentation; Node 3: transistors experimentation; Node 4: 

OpAmp experimentation; etc.) the overall VISIR nodes would share a huge and 

plentiful electronics practices repository, enriching exponentially the availability 

and quality of practical experiments. This repository could also be extended to 

practical guides and additional documentation, forming a VISIR community not 

only for sharing resources but also for a continuous improvement at all levels. 

Finally, this whole notion of building a federation of individual nodes is not 

unique to remote labs; rather there are also examples of proposals emerging from 

the area of simulations, as presented in [45]. 

6. Ongoing projects around VISIR 

6.1. VISIR+  

The history of collaboration around VISIR among a number of European and 

LA HEI; the current demand for an increased use of instructional technologies in 

Science and Engineering Education, in both Brazil and Argentina, able to supply 

these two countries with a better skilled workforce; and the opportunity presented 

by the Erasmus+ program, favoring joint projects between these two world re-
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gions, under the scope of the Capacity Building in Higher Education (CBHE) 

measure, provided the motivation to submit a project proposal for installing new 

VISIR nodes in the two aforementioned countries. Under this scope, the Polytech-

nic of Porto (IPP), from Portugal, the National Distance Education University 

(UNED) and the University of Deusto (UD), both from Spain, the Carinthia Uni-

versity of Applied Sciences (CUAS), from Austria, the Blekinge Institute of 

Technology (BTH), from Sweden, the Pontifical Catholic University of Rio de 

Janeiro (PUC-Rio), the Federal University of Santa Catarina (UFSC), the Federal 

Institute of Santa Catarina (IFSC), the Brazilian Association for Engineering Edu-

cation (ABENGE), all the previous 4 institutions from Brazil, the National Uni-

versity of Rosario (UNR), the National University of Santiago del Estero (UNSE), 

and the Research Institute of Rosario for Educational Sciences (IRICE-

CONICET), all the previous 3 institutions from Argentina, joined forces together 

and submitted a project proposal to the very first call of Erasmus+ program, on 10 

February 2015. The project proposal, entitled “Educational Modules for Electric 

and Electronic Circuits Theory and Practice following an Enquiry-based Teaching 

and Learning Methodology supported by VISIR”, and shortly referred as VISIR+, 

was positively evaluated in July 2015 and had its Kick-Off-Meeting (KOM) in 

Karlskrona, Sweden on 1-3 February 2016.  

In brief, VISIR+ is installing 5 new VISIR nodes in the Brazilian and Argen-

tinean HEI, i.e. PUC-Rio, UFSC, IFSC, UNR, and UNSE, with the assistance of 

the European HEI who already have one or more VISIR systems installed, i.e. 

BTH, IPP, UNED, UD, and CUAS. IRICE-CONICET is responsible for quality 

monitoring the didactical implementation of the new VISIR nodes and ABENGE 

will support the dissemination and impact evaluation of the VISIR+ project. Fig-

ure 7 provides an idea of the geographical distribution of the VISIR+ consortium. 
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Fig. 7 Geographical distribution of the VISIR+ consortium 

 

In order to effectively grow the CoP around VISIR, the project includes the fol-

lowing three training actions (TA):  

 A 1st one held at BTH, with presentations done by all European partners. Two 

representatives from the Argentinean and Brazilian HEI participated locally, 

while an additional number of teachers participated remotely. At the end of this 

activity, participants were expected to know what VISIR is, what experiments 

it can support, how it can be incorporated into a course curricula, what learning 

outcomes does it enable, etc. A snapshot of TA1, delivered at BTH, is shown in 

Figure 8. 

 A 2nd TA delivered at each LA HEI. Although the initial plan was to deliver 

this TA after the local installation of a VISIR node, bureaucratic problems im-

pairing the timely acquisition of the necessary equipment, by these institutions, 

led to the situation where only PUC-Rio used its newly installed VISIR node to 

support the local TA. However, this constraint did not prevent the delivery of 

the TA because of the remote nature of VISIR. Instead of using a local system, 

the trainers remotely used the system installed at their home institution in Eu-
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rope. The target audience of TA2 were the two local representatives who at-

tended TA1 plus all interested teachers from the same institution and also, at 

least, one representative from the associated partners. These associated partners 

–two per LA HEI– are nearby educational institutions also interested in using 

VISIR. Figures 9, 10, 11, 12, and 13 provide snapshots of TA2 delivered at 

PUC-Rio, UFSC, UNR, UNSE, and IFSC respectively. The results of TA2 

were reported in [46] [47] [48]. 

 Finally, a 3rd TA to be held at each associated partner. This last TA, jointly de-

livered by one LA partner and one European partner, will test the capacity to 

aggregate other institutions around the use of VISIR. This TA will include ap-

plication examples from courses delivered at the LA HEI, to prove the adapta-

bility of VISIR to different institutional cultures and its universality in terms of 

experiments with electric and electronic circuits. 

 

 

Fig. 8 Snapshot of TA1 delivered at BTH (1-2 February 2016)  
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Fig. 9 Snapshot of TA2 delivered at PUC-Rio (5-6 September 2016) 

 

Fig. 10 Snapshot of TA2 delivered at UFSC (22-23 August 2016) 
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Fig. 11 Snapshot of TA2 delivered at UNR (12-16 September 2016) 

 

Fig. 12 Snapshot of TA2 delivered at UNSE (12-16 September 2016) 

 

Fig. 13 Snapshot of TA2 delivered at IFSC (25-26 August 2016) 
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An underlying common aspect to all TA is the proposed instructional design of 

all target courses. In particular, VISIR+ aims to develop a set of educational mod-

ules comprising the use of hands-on, simulated and remote labs, following an en-

quiry-based methodology explained in [49] [50] [51]. The combination of these 

three different lab environments provides additional opportunities for students to 

acquire higher-order experimental skills and hence be better prepared to face the 

labor market [52]. In addition, teachers may use two supplementary tools (simula-

tions and remote labs) for enriching theoretical classes, in particular for proving or 

demonstrating a given model or formula, which is thought to favor students’ moti-

vation and, hence, increase their knowledge retention level [53][54].  

6.2. PILAR 

Regarding PILAR, an acronym that stands for “Platform Integration of Labora-

tories based on the Architecture of visiR”, there are still few results. The project 

proposal was submitted in February 2016 and positively evaluated in July 2016. 

The project KOM was held in Madrid, Spain, on November 2016 and the initial 

activities are now being implemented, in particular a thorough analysis of the 

characteristics associated with the VISIR systems installed in the consortium part-

ners, i.e. BTH, CUAS, UNED, UD, and IPP. In addition to these partners, the pro-

ject consortium also includes the International Association for Online Engineering 

(IAOE), a Small and Medium Enterprise (SME) named EVM Project Manage-

ment Experts SL, and Omnia, the Joint Authority of Education in Spoo Region, 

Finland. At the end of the project, it is expected that the first federation of VISIR 

nodes will be effective and able to provide the services mentioned in section 5.  

7. CONCLUSION AND FUTURE PERSPECTIVES 

Although the two previous projects are still ongoing, some aspects that arise 

from analyzing the constant growing of the VISIR community should be re-

marked. The possibility that emerges from a federation of remote labs allows shar-

ing resources and widens opportunities for remote experimentation. This means 

that whereas at a first moment each partner has its own VISIR system, to be used 

by teachers and students, and shared with other institutions, the next step will be to 

federate the VISIR systems of the various institutions. What could be achieved 

from this federation can be described with an example. If the VISIR system of one 

participating engineering school, located in Argentina, and the VISIR system of 

another participating engineering school, located in Spain, are integrated into a 

federation, the students and teachers of those two institutions will have a seamless 
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access to both systems. This is much more than what each institution has devel-

oped individually and is able to offer to its teachers and students, alone.  

In this way, VISIR+ can be considered the first necessary step to have a federa-

tion of VISIR nodes, in which each partner is a supplier and a user at the same 

time. On its turn, PILAR is the vehicle to implement the first federation of VISIR 

nodes, in Europe. 
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