15 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Use Of Anatomical, Chemical, And Molecular Genetic Characteristics In The Quality Control Of Medicinal Species: A Case Study Of Sarsaparilla (smilax Spp.)

    No full text
    Use of Anatomical, Chemical, and Molecular Genetic Characteristics in the Quality Control of Medicinal Species: A Case Study of Sarsaparilla (Smilax spp.) Species of the genus Smilax, popularly known as sarsaparilla, are used in folk medicine as a tonic, an anti-rheumatic, and an anti-syphilis treatment, and are sold in Brazilian drugstores without any quality control regarding their origin and efficacy. The origin of the material is mainly based on wild extraction. Quality control of herbal drugs should include a more reliable identification of the source involving characterization and definition of their anatomical and chemical characteristics. The current study aimed to verify whether the combined use of anatomical, chemical, and molecular genetic characteristics might be useful in the quality control of medicinal plants, specifically the sarsaparilla sold in compounding drugstores in the state of São Paulo, Brazil. Root samples were subjected to conventional light microscopy and scanning electron microscopy. To determine the chemical profile, thin-layer chromatography (TLC) was applied to ethanol extracts of the roots. The chemical profile of the chemical material sold in stores was compared with the previously determined profiles of medicinal Smilax species (S. goyazana, S. rufescens, S. brasiliensis, S. campestris, S. cissoides, S. fluminensis, S. oblongifolia, and S. polyantha). Although there was considerable similarity between the anatomical structure of the commercial sarsaparilla and the structure reported in the literature for the Smilax species, there were differences in the phloem organization and in the presence of a series of idioblasts containing raphides, phenolic idioblasts, and metaxylem in the center of the plant structure. TLC analysis of the commercial ethanol extracts revealed spots with colors ranging from yellow to green. In addition, the same spots showed components with the same retention factor (Rf), indicating chemical similarity between the different samples. However, the distribution pattern of the spots, as well as the Rf of the commercial samples, differed from those obtained for the eight species of Smilax, which were very similar to each other. Comparing the groups examined in the present study with regard to microsatellite markers and DNA barcoding revealed that commercial sarsaparilla is genetically different from the eight species of Smilax known for their medicinal properties in Brazilian ethnobotanical surveys. This seriously calls into question their effectiveness. This case study of sarsaparilla demonstrates the utility of anatomical, chemical, and molecular genetic characteristics in the quality control of medicinal plants.684410425Alves, P.F., Caracterização genética de populações de Caryocar brasiliense Camb. e Jatropha curcas L., espécies potenciais para o biodiesel. Ph.D. thesis (2013) Universidade Estadual Paulista Júlio de Mesquita Filho, , UNESP: BrasilAndreata, R.H.P., Revisão das espécies brasileiras do gênero Smilax Linnaeus (Smilacaceae) (1997) Pesquisas Botânica, 47, pp. 7-244Andreata, R.H.P., A new species of Smilax and a key to all species of Minas Gerais, Brazil (2009) Systematic Botany, 34 (1), pp. 28-31Arber, A., (1925) Monocotyledons: A morphological study, , Cambridge University Press, Cambridge:Barbosa, K.S., Yoshida, M., Scudeller, V., Detection of adulterated copaiba (Copaiba multijuga Hayne) oil resins by refractive index and thin layer chromatography (2009) Revista Brasileira de Farmacognosia, 19, pp. 57-60. , COI: 1:CAS:528:DC%2BD1MXntlCrsLk%3DBillotte, N., Lagoda, P.J.L., Risterucci, A.M., Baurens, F.C., Microsatellite-enriched libraries: Applied methodology for the development of SSR markers in tropical crops (1999) Fruits, 54, pp. 277-288. , COI: 1:CAS:528:DyaK1MXmsVCkuro%3DCáceres, A., Cruz, S.M., Martínez, V., Gaitán, I., Santizo, A., Gattuso, S., Gattuso, M., Ethnobotanical, pharmacognostical, pharmacological and phytochemical studies on Smilax domingensis in Guatemala (2012) Revista Brasileira de Farmacognosia, 22, pp. 239-248Camargo, E.E.S., Vilegas, W., Controle de qualidade dos extratos polares de Turnera diffusa Willd. ex Schult., Turneraceae (2010) Revista Brasileira de Farmacognosia, 20 (2), pp. 228-232. , COI: 1:CAS:528:DC%2BC3cXhtVCmtrnECheadle, V.I., The occurrence and types of vessels in the various organs of the plant in the monocotyledoneae (1942) American Journal of Botany, 29, pp. 441-450Cunha, N.S., Curiosa falsificação de salsaparrilha (1937) Revista da Associação Brasileira de Farmacêuticos, 18, pp. 399-352Cunha, N.S., Da salsaparrilha a japecanga (1937) Tribuna Farmacêutica, 5, pp. 145-150Cunha, N.S., As salsaparrilhas em face da Farmacopéia Brasileira (1940) Tribuna Farmacêutica, 8, pp. 105-112Czekalski, L., Mourão, K.S.M., Marques, L.C., Avaliação farmacognóstica das sumidades floridas de Prunella sp., adulterante comercial do alecrim europeu Rosmarinus officinalis (2009) Revista Pesquisa e Inovação Farmacêutica, 1, pp. 27-39Dias-Neto, A.O., Morfo-anatomia do eixo vegetativo de Smilax muscosa Tol. e S. pilosa Andreata e Leoni (Smilacaceae). 2012. Master’s thesis (2012) Ciências Biológicas – Botânica, , Museu Nacional da Universidade Federal do Rio de Janeiro: Rio de JaneiroDoyle, J.J., Doyle, J.L., Isolation of plant DNA from fresh tissue (1990) Focus, 12, pp. 13-15Drummond, A.J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Wilson, A., (2009) Geneious, v4, p. 6. , http://www.geneious.comFalush, D., Stephens, M., Pritchard, J.K., Inference of population structure using multilocus genotype data: Dominant markers and null alleles (2007) Molecular Ecology Notes, 7, pp. 574-578. , COI: 1:CAS:528:DC%2BD2sXpslOhtbc%3D, PID: 18784791Filartiga, A.L., Caracterização morfo-fisiológica de hemiepífita Rhodospatha oblongata POEPP (Araceae): Desenvolvimento em direção à copa das árvores. 2011 (2011) Master’s thesis, , Ciências Biológicas – Botânica: Universidade Federal do Rio de JaneiroGanopoulos, I., Madesis, P., Tsaftaris, A., Universal ITS2 barcoding DNA region coupled with high-resolution melting (HRM) analysis for seed authentication and adulteration testing in leguminous forage and pasture species (2012) Plant Molecular Biology Reporter, 30, pp. 1322-1328. , COI: 1:CAS:528:DC%2BC38XhsFynsL%2FKGattuso, S.J., Exomorfología y anatomía de Smilax campestris Griseb. (Smilacaceae) (1995) Acta Farmaceutica Bonaerense, 14, pp. 181-190Grayum, M.H., Evolution and phylogeny of the Araceae (1990) Annals of the Missouri Botanical Garden, 77, pp. 628-697Guimarães, A.R., Costa, C.G., Andreata, R.H.P., Morfoanatomia do sistema subterrâneo de Smilax subsessiliflora (Smilacaceae) (2010) Rodriguésia, 61 (2), pp. 181-194Hebert, P.D.N., Cywinska, A., Ball, S.L., de Waard, J.R., Biological identifications through DNA barcodes (2003) Proceedings of the Royal Society of London Series B: Biological Sciences, 270, pp. 313-321. , COI: 1:CAS:528:DC%2BD3sXktVWiu7g%3D, PID: 12614582Huggett, B., Tomlinson, P.B., Aspects of vessel dimensions in the aerial roots of epiphytic Araceae (2010) International Journal of Plant Sciences, 171, pp. 362-369Karnovsky, M.J., A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy (1965) Journal of Cell Biology, 27 (1), pp. 137-138Kauff, F., Rudall, P.J., Conran, J.G., Systematic root anatomy of Asparagales and other monocotyledons (2000) Plant Systematics and Evolution, 223, pp. 139-154Khan, S., Qureshi, M.I., Kamaluddin, T.A., Abdin, M.Z., Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion (2007) African Journal of Biotechnology, 6, pp. 175-178. , COI: 1:CAS:528:DC%2BD2sXjsFegt7g%3DKhan, S., Al-Qurainy, F., Nadeem, M., Tarroum, M., Development of genetic markers for Ochradenus arabicus (Resedaceae), an endemic medicinal plant of Saudi Arabia (2012) Genetics and Molecular Research, 11, pp. 1300-1308. , COI: 1:CAS:528:DC%2BC38Xnslylsro%3D, PID: 22614359Khanuja, S.P.S., Shasany, A.K., Darokar, M.P., Kumar, S., Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils (1999) Plant Molecular Biology Reporter, 17, pp. 1-7www.plosone.org, Kool, A., H. J. Boer, A. Krüger, A. Rydberg, A. Abbad, L. Björk, and G. Martin. 2012. Molecular identification of commercialized medicinal plants in southern Morocco. PLoS ONE. 7: e39459Kraus, J.E., Arduin, M., (1997) Manual básico de métodos em morfologia vegetal, , ERDUR, Rio de Janeiro, Seropédica:Kress, W.J., Erickson, D.L., A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH – psbA spacer region (2007) Plos One, 2, p. e508. , PID: 17551588Lahaye, R., Van Der, B.M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Savolainen, V., DNA barcoding the floras of biodiversity hotspots (2008) Proceedings of the National Academy of Sciences USA, 105, pp. 2923-2928. , COI: 1:CAS:528:DC%2BD1cXjtVSis7c%3DLarkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , COI: 1:CAS:528:DC%2BD2sXhtlaqsL%2FM, PID: 17846036Lorenzi, H., (2002) Plantas medicinais no Brasil: Nativas e exóticas cultivadas, , Instituto Plantarum, Nova Odessa:Marques, L.C., Pieri, C., Roman-Júnior, W.A., Cardoso, M.L.C., Milaneze-Gutierre, M.A., Mello, J.C.P., Controle farmacognóstico das raízes de Heteropteris aphrodisiaca O. Mach. (Malpighiaceae) (2007) Revista Brasileira de Farmacognosia, 17, pp. 604-615. , COI: 1:CAS:528:DC%2BD1cXjtVOhsrw%3DMartins, A.R., Morfoanatomia dos órgãos vegetativos e perfil químico de espécies do gênero Smilax L. (Smilacaceae). Ph.D. thesis (2009) Biologia Vegetal, , Universidade Estadual de Campinas, Campinas:Martins, A.R., Appezzato-da-Gloria, B., Morfoanatomia dos órgãos vegetativos Smilax polyanta Griseb. (Smilacaceae) (2006) Revista Brasileira de Botânica, 29, pp. 555-567Martins, A.R., Pütz, N., Soares, A.N., Bombo, A.B., Appezzato-da-Gloria, B., New approaches to underground system in Brazilian Smilax species (Smilacaceae) (2010) The Journal of the Torrey Botanical Society, 137, pp. 220-235Martins, A.R., Abreu, A.G., Bajay, M.M., Villela, P.M.S., Batista, C.E.A., Monteiro, M., Alves-Pereira, A., Zucchi, M.I., Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species (2013) Applications in Plant Sciences, 1, p. 1200507Martins, W.S.D., Lucas, C.S., Neves, K.F.S., Bertioli, D.J., WebSat—A Web Software for MicroSatellite Marker Development (2009) Bioinformation, 3, pp. 282-283. , PID: 19255650Medeiros, M.F.T., Senna-Valle, L., Andreata, R.H.P., Histórico e o uso da “salsaparrilha” (Smilax spp.) pelos boticários no Mosteiro de São Bento (2007) Revista Brasileira de Biociências, 5, pp. 27-29Ming, L.C., Estudos e pesquisas de plantas medicinais na agronomia (1994) Horticultura Brasileira, 12, pp. 3-9Newmaster, S.G., Fazekas, A.J., Steeves, R.A.D., Janovec, J., Testing candidate plant barcode regions in the Myristicaceae (2008) Molecular Ecology Resources, 8, pp. 480-490. , COI: 1:CAS:528:DC%2BD1cXmtFSksL0%3D, PID: 21585825Palumbi, S.R., PCR and molecular systematics (1996) Molecular Systematics, 2, pp. 205-247Pritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155 (2), pp. 945-959. , COI: 1:STN:280:DC%2BD3cvislKrtA%3D%3D, PID: 10835412Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinformatics methods and protocols: Methods in molecular biology, pp. 365-386. , Krawetz S, Misener S, (eds), Humana Press, Totowa:Sakai, W.S., Simple method for differential stainning of paraffin embedded plant material using toluidine blue (1973) Stain Technology, 48, pp. 247-248. , COI: 1:CAS:528:DyaE3sXlt1ehu70%3D, PID: 4126691Silva, J.M., Anatomia e perfil químico de duas espécies do gênero Smilax L. (Smilacaceae). Master’s thesis (2010) Fisiologia e Bioquímica de Plantas, , Universidade de São Paulo, Piracicaba:Soares, A.N., Morfoanatomia, perfil químico e propagação de Smilax fluminensis Steud. (Smilacaceae). Master’s thesis (2010) Fisiologia e Bioquímica de Plantas, , Universidade de São Paulo, Piracicaba:Stellfeld, C., A salsaparilha do Paraná e a ausência do parênquima cortical (1938) Tribuna Farmacêutica, 6, pp. 5-7Stellfeld, C., Sarçaparilha e Jupicanga (1940) Tribuna Farmacêutica, 8, pp. 193-202Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Molecular Biology and Evolution, 28, pp. 2731-2739. , COI: 1:CAS:528:DC%2BC3MXht1eiu73K, PID: 21546353Techen, N., Parveen, I., Pan, Z., Khan, I.A., DNA barcoding of medicinal plant material for identification (2014) Current Opinion in Biotechnology, 25, pp. 103-110. , COI: 1:CAS:528:DC%2BC2cXhs1aitLc%3D, PID: 24484887Tnah, L.H., Lee, C.T., Lee, S.L., Ng, K.K., Ng, C.H., Hwang, S.S., Microsatellite markers of an important medicinal plant, Eurycoma longifolia (Simaroubaceae), for DNA profiling (2011) American Journal of Botany, pp. e130-e132Vandercolme, E., História botânica e terapêutica das salsaparrilhas (1947) Revista da Flora Medicinal, 7, pp. 316-524Venkatesh, S., Reddy, Y.S.R., Ramesh, M., Swamy, M.M., Mahadevan, N., Suresh, B., Pharmacognostical studies on Dodonaea viscosa leaves (2008) African Journal of Pharmacy and Pharmacology, 2 (4), pp. 83-88Vianna, W.O., Soares, M.K.M., Appezzato-da-Glória, B., Anatomia da raiz escora de Philodendron bipinnatifidum Schott (Araceae) (2001) Acta Botanica Brasilica, 15 (3), pp. 313-320Wagner, H., Bladt, S., (1996) Plant drug analysis: A thin layer chromatography atlas, , Springer-Verlag, Berlin
    corecore