432 research outputs found

    Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure

    Get PDF
    Increased intraocular pressure (IOP) damages the retinal ganglion cell axons as they pass through the optic nerve head (ONH). The massive connective tissue structure of the human lamina cribrosa is generally assumed to be the pressure transducer responsible for the damage. The rat, however, with no lamina cribrosa, suffers the same glaucomatous response to raised IOP. Here, we show that the astrocytes of the rat ONH are "fortified" by extraordinarily dense cytoskeletal filaments that would make them ideal transducers of distorting mechanical forces. The ONH astrocytes are arranged as a fan-like radial array, firmly attached ventrally to the sheath of the ONH by thick basal processes, but dividing dorsally into progressively more slender processes with only delicate attachments to the sheath. At 1 week after raising the IOP by an injection of magnetic microspheres into the anterior eye chamber, the fine dorsal processes of the ONH astrocytes are torn away from the surrounding sheath. There is no indication of distortion or compression of the axons. Subsequently, despite return of the IOP toward normal levels, the damage to the ONH progresses ventrally through the astrocytic cell bodies, resulting in complete loss of the fortified astrocytes and of the majority of the axons by around 4 weeks. We propose that the dorsal attachments of the astrocytes are the site of initial damage in glaucoma, and that the damage to the axons is not mechanical, but is a consequence oflocalized loss of metabolic support from the astrocytes (Tsacopoulos and Magistretti (1996) J Neurosci 16:877-885)

    Research on the mechanics of underwater supersonic gas jets

    Get PDF
    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full-and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz

    Water absorption property of cracked concrete and effect of water repellent treatment

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection

    Get PDF
    T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection

    Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography

    Full text link
    Surface-patterned ZnO thin films were fabricated by direct imprinting on ZnO sol and subsequent annealing process. The polymer-based ZnO sols were deposited on various substrates for the nanoimprint lithography and converted to surface-patterned ZnO gel films during the thermal curing nanoimprint process. Finally, crystalline ZnO films were obtained by subsequent annealing of the patterned ZnO gel films. The optical characterization indicates that the surface patterning of ZnO thin films can lead to an enhanced transmittance. Large-scale ZnO thin films with different patterns can be fabricated by various easy-made ordered templates using this combination of sol-gel and nanoimprint lithography techniques.Comment: 17 pages, 5 figures; Published in Journal of Sol-Gel Science and Technology, 201

    SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Get PDF
    SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices

    Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    Get PDF
    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system

    Adult Raphe-Specific Deletion of Lmx1b Leads to Central Serotonin Deficiency

    Get PDF
    The transcription factor Lmx1b is essential for the differentiation and survival of central serotonergic (5-HTergic) neurons during embryonic development. However, the role of Lmx1b in adult 5-HTergic neurons is unknown. We used an inducible Cre-LoxP system to selectively inactivate Lmx1b expression in the raphe nuclei of adult mice. Pet1-CreERT2 mice were generated and crossed with Lmx1bflox/flox mice to obtain Pet1-CreERT2; Lmx1bflox/flox mice (which termed as Lmx1b iCKO). After administration of tamoxifen, the level of 5-HT in the brain of Lmx1b iCKO mice was reduced to 60% of that in control mice, and the expression of tryptophan hydroxylase 2 (Tph2), serotonin transporter (Sert) and vesicular monoamine transporter 2 (Vmat2) was greatly down-regulated. On the other hand, the expression of dopamine and norepinephrine as well as aromatic L-amino acid decarboxylase (Aadc) and Pet1 was unchanged. Our results reveal that Lmx1b is required for the biosynthesis of 5-HT in adult mouse brain, and it may be involved in maintaining normal functions of central 5-HTergic neurons by regulating the expression of Tph2, Sert and Vmat2

    A Variant of TNFR2-Fc Fusion Protein Exhibits Improved Efficacy in Treating Experimental Rheumatoid Arthritis

    Get PDF
    Etanercept, a TNF receptor 2-Fc fusion protein, is currently being used for the treatment of rheumatoid arthritis (RA). However, 25% to 38% of patients show no response which is suspected to be partially due to insufficient affinity of this protein to TNFα. By using computational protein design, we found that residue W89 and E92 of TNFR2 were critical for ligand binding. Among several mutants tested, W89Y/E92N displayed 1.49-fold higher neutralizing activity to TNFα, as compared to that of Etanercept. Surface plasmon resonance (SPR) based binding assay revealed that the equilibrium dissociation constant of W89Y/E92N to TNFα was 3.65-fold higher than that of Etanercept. In a rat model of collagen-induced arthritis (CIA), W89Y/E92N showed a significantly better ability than Etanercept in reducing paw swelling and improvement of arthritic joint histopathologically. These data demonstrate that W89Y/E92N is potentially a better candidate with improved efficacy in treating RA and other autoimmune diseases

    Sp1 Is Essential for p16(INK4a) Expression in Human Diploid Fibroblasts during Senescence

    Get PDF
    BACKGROUND: p16 (INK4a) tumor suppressor protein has been widely proposed to mediate entrance of the cells into the senescent stage. Promoter of p16 (INK4a) gene contains at least five putative GC boxes, named GC-I to V, respectively. Our previous data showed that a potential Sp1 binding site, within the promoter region from −466 to −451, acts as a positive transcription regulatory element. These results led us to examine how Sp1 and/or Sp3 act on these GC boxes during aging in cultured human diploid fibroblasts. METHODOLOGY/PRINCIPAL FINDINGS: Mutagenesis studies revealed that GC-I, II and IV, especially GC-II, are essential for p16 (INK4a) gene expression in senescent cells. Electrophoretic mobility shift assays (EMSA) and ChIP assays demonstrated that both Sp1 and Sp3 bind to these elements and the binding activity is enhanced in senescent cells. Ectopic overexpression of Sp1, but not Sp3, induced the transcription of p16 (INK4a). Both Sp1 RNAi and Mithramycin, a DNA intercalating agent that interferes with Sp1 and Sp3 binding activities, reduced p16 (INK4a) gene expression. In addition, the enhanced binding of Sp1 to p16 (INK4a) promoter during cellular senescence appeared to be the result of increased Sp1 binding affinity, not an alteration in Sp1 protein level. CONCLUSIONS/SIGNIFICANCE: All these results suggest that GC- II is the key site for Sp1 binding and increase of Sp1 binding activity rather than protein levels contributes to the induction of p16 (INK4a) expression during cell aging
    corecore