23 research outputs found

    Liver injury and fibrosis induced by dietary challenge in the ossabaw miniature Swine

    Get PDF
    BACKGROUND: Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. METHODS: Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. RESULTS: The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. CONCLUSIONS: This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides

    Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome

    Get PDF
    Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs.The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs' cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine.Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs

    Worm Burden-Dependent Disruption of the Porcine Colon Microbiota by Trichuris suis Infection

    Get PDF
    Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∌10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naĂŻve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection

    Impaired function of coronary BKCa channels in metabolic syndrome

    No full text
    The role of large-conductance Ca2+-activated K+ (BKCa) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3–6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that induces MetS (45% kcal from fat, 2% cholesterol, 20% kcal from fructose). MetS significantly impaired coronary vasodilation to the BKCa opener NS-1619 in vivo (30–100 ÎŒg) and reduced the contribution of these channels to adenosine-induced microvascular vasodilation in vitro (1–100 ÎŒM). MetS reduced whole cell penitrem A (1 ÎŒM)-sensitive K+ current and NS-1619-activated (10 ÎŒM) current in isolated coronary vascular smooth muscle cells. MetS increased the concentration of free intracellular Ca2+ and augmented coronary vasoconstriction to the L-type Ca2+ channel agonist BAY K 8644 (10 pM–10 nM). BKCa channel α and ÎČ1 protein expression was increased in coronary arteries from MetS swine. Coronary vascular dysfunction in MetS is related to impaired BKCa channel function and is accompanied by significant increases in L-type Ca2+ channel-mediated coronary vasoconstriction

    Effect of diet-induced obesity and metabolic syndrome on skeletal muscles of Ossabaw miniature swine

    No full text
    Ossabaw swine fed excess kilocalorie diet develop metabolic syndrome (MS) characterized by obesity, hypertension, insulin resistance, and glucose intolerance with/without dyslipidemia. The purpose of this study was to test the hypothesis that MS would have a detrimental effect on skeletal muscle structure and cause changes in the expression of myosin heavy chains (MHCs). Adult male Ossabaw swine were fed for 24 wk high-fructose or high-fat/cholesterol/fructose diets to induce normolipidemic MS (MetS) or dyslipidemic MS (DMetS), respectively, and were compared with the lean swine on control diet. MetS swine showed mild MS, lacking increases in total and low density lipoprotein (LDL) cholesterol, both of which were highly upregulated in DMetS swine. There was an ∌1.2-fold increase in the cross-sectional areas of muscle fibers in MetS and DMetS groups compared with control for biceps femoris and plantaris muscles. In plantaris muscles, DMetS diet caused an ∌2-fold decrease in slow MHC mRNA and protein expression and an ∌1.2- to 1.8-fold increase in the number of intramyocellular lipid (IMCL) droplets without large changes in the size of the droplets. There was a trend to the decrease in slow MHC expression in muscles of swine on MetS diet. The number of IMCL droplets in muscle fibers of the MetS group was comparable to controls. These data correlate well with the data on total plasma cholesterol (control = 60, MetS = 70, and DMetS = 298 mg/dl) and LDL (control = 29, MetS = 30, and DMetS = 232 mg/dl). We conclude that structural changes observed in skeletal muscle of obese Ossabaw swine correlate with those previously reported for obese humans
    corecore