82 research outputs found

    Immunohistochemical expression of insulin-like growth factor binding protein-3 in invasive breast cancers and ductal carcinoma in situ: implications for clinicopathology and patient outcome

    Get PDF
    INTRODUCTION: Insulin-like growth factor binding protein-3 (IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGF-independent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates EGF (epidermal growth factor) and interacts with HER-2. Previously, high IGFBP-3 levels in breast cancers have been determined by enzyme-linked immunosorbent assay and immunoradiometric assay methods. In vitro, IGFBP-3's mechanisms of action may involve cell membrane binding and nuclear translocation. To evaluate tumour-specific IGFBP-3 expression and its subcellular localisation, this study examined immunohistochemical IGFBP-3 expression in a series of invasive ductal breast cancers (IDCs) with synchronous ductal carcinomas in situ (DCIS) in relation to clinicopathological variables and patient outcome. METHODS: Immunohistochemical expression of IGFBP-3 was evaluated with the sheep polyclonal antiserum (developed in house) with staining performed as described previously. RESULTS: IGFBP-3 was evaluable in 101 patients with a variable pattern of cytoplasmic expression (positivity of 1+/2+ score) in 85% of invasive and 90% of DCIS components. Strong (2+) IGFBP-3 expression was evident in 32 IDCs and 40 cases of DCIS. A minority of invasive tumours (15%) and DCIS (10%) lacked IGFBP-3 expression. Nuclear IGFBP-3 expression was not detectable in either invasive cancers or DCIS, with a consistent similarity in IGFBP-3 immunoreactivity in IDCs and DCIS. Positive IGFBP-3 expression showed a possible trend in association with increased proliferation (P = 0.096), oestrogen receptor (ER) negativity (P = 0.06) and HER-2 overexpression (P = 0.065) in invasive tumours and a strong association with ER negativity (P = 0.037) in DCIS. Although IGFBP-3 expression was not an independent prognosticator, IGFBP-3-positive breast cancers may have shorter disease-free and overall survivals, although these did not reach statistical significance. CONCLUSIONS: Increased breast epithelial IGFBP-3 expression is a feature of tumorigenesis with cytoplasmic immunoreactivity in the absence of significant nuclear localisation in IDCs and DCIS. There are trends between high levels of IGFBP-3 and poor prognostic features, suggesting that IGFBP-3 is a potential mitogen. IGFBP-3 is not an independent prognosticator for overall survival or disease-free survival, to reflect its dual effects on breast cancer growth regulated by complex pathways in vivo that may relate to its interactions with other growth factors

    A prospective study of serum insulin-like growth factor-I (IGF-I), IGF-II, IGF-binding protein-3 and breast cancer risk.

    Get PDF
    The associations between serum concentrations of insulin-like growth factor-I (IGF-I), IGF-II and IGF-binding proteins (IGFBP)-3 and risk of breast cancer were investigated in a nested case-control study involving 117 cases (70 premenopausal and 47 postmenopausal at blood collection) and 350 matched controls within a cohort of women from the island of Guernsey, UK. Women using exogenous hormones at the time of blood collection were excluded. Premenopausal women in the top vs bottom third of serum IGF-I concentration had a nonsignificantly increased risk for breast cancer after adjustment for IGFBP-3 (odds ratio (OR) 1.71; 95% confidence interval (CI): 0.74-3.95; test for linear trend, P=0.21). Serum IGFBP-3 was associated with a reduction in risk in premenopausal women after adjustment for IGF-I (top third vs the bottom third: OR 0.49; 95% CI: 0.21-1.12, P for trend=0.07). Neither IGF-I nor IGFBP-3 was associated with risk in postmenopausal women and serum IGF-II concentration was not associated with risk in pre- or postmenopausal women. These data are compatible with the hypothesis that premenopausal women with a relatively high circulating concentration of IGF-I and low IGFBP-3 are at an increased risk of developing breast cancer

    Differential interactions between IGFBP-3 and transforming growth factor-beta (TGF-ÎČ) in normal vs cancerous breast epithelial cells

    Get PDF
    In addition to modulating insulin-like growth factors action, it is now clear that insulin-like growth factor-binding protein-3 also has intrinsic effects on cell growth and survival. We have compared the effects of insulin-like growth factor-binding protein-3 and transforming growth factor-beta on cell proliferation and death of Hs578T cells and the normal breast epithelial cell line, MCF-10A. The growth of MCF-10A cells was inhibited at low concentrations of insulin-like growth factor-binding protein-3 but stimulated at high concentrations. These differential effects were unaffected in the presence of an insulin-like growth factor-I receptor antagonist. A synthetic peptide corresponding to the serine phosphorylation domain of insulin-like growth factor-binding protein-3 (that does not bind to insulin-like growth factors) also mimicked these differential actions. The growth of both cell lines was significantly inhibited by transforming growth factor-beta, this was associated with a 14-fold increase of insulin-like growth factor-binding protein-3 secreted by the Hs578T cells but a five-fold decrease of insulin-like growth factor-binding protein-3 secreted by MCF-10A cells. Replacement doses of exogenous insulin-like growth factor-binding protein-3 overcame the transforming growth factor-beta-induced growth inhibition in the MCF-10A cells. Cell death induced by ceramide was significantly reduced by insulin-like growth factor-binding protein-3 in the MCF-10A cells and depleting insulin-like growth factor-binding protein-3 with transforming growth factor-beta in these cells consequently increased their susceptibility to ceramide. In contrast, insulin-like growth factor-binding protein-3 enhanced apoptosis induced by ceramide in the Hs578T cells but transforming growth factor-beta treated Hs578T cells were resistant to apoptosis. The addition of anti-sense mRNA to insulin-like growth factor-binding protein-3 significantly abrogated this effect of transforming growth factor-beta. These data indicate that insulin-like growth factor-binding protein-3 has intrinsic activity capable of inhibiting or enhancing the growth and survival of breast epithelial cells depending on the cell line and exposure to other cytokines

    IGFBP3 mRNA expression in benign and malignant breast tumors

    Get PDF
    INTRODUCTION: Most previous studies have focused on evaluating the association between circulating insulin-like growth factor binding protein 3 (IGFBP-3) levels and breast cancer risk. Emerging evidence over the past few years suggests that IGFBP-3 may act directly on mammary epithelial cells. METHODS: To understand the role of IGFBP-3 in breast tumorigenesis, we investigated IGFBP3 mRNA expression levels in benign and malignant breast tumors and their adjacent normal tissues using real-time quantitative PCR. RESULTS: Cancer tissues had significantly lower IGFBP3 expression than benign tumor tissues (p < 0.001). IGFBP3 expressions in both tumor and adjacent tissues were higher in patients who had proliferative benign tumors than in those who had non-proliferative benign tumors. Among patients with benign breast disease, IGFBP3 expression in the tumor was significantly higher than that in their adjacent normal tissue. There were no apparent associations of IGFBP3 expression in cancer tissues with either overall survival or disease-free survival in a cohort of 521 patients with breast cancer. CONCLUSION: Our findings suggest that the expression level of IGFBP3 in breast tissues may be involved in breast tumorigenesis

    Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa

    Get PDF
    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors

    Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors

    Get PDF
    Background Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device. Results The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects). Conclusions The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio
    • 

    corecore