241 research outputs found
Increasing the coherence time of Bose-Einstein-condensate interferometers with optical control of dynamics
Atom interferometers using Bose-Einstein condensate that is confined in a
waveguide and manipulated by optical pulses have been limited by their short
coherence times. We present a theoretical model that offers a physically simple
explanation for the loss of contrast and propose the method for increasing the
fringe contrast by recombining the atoms at a different time. A simple,
quantitatively accurate, analytical expression for the optimized recombination
time is presented and used to place limits on the physical parameters for which
the contrast may be recovered.Comment: 34 Pages, 8 Figure
Two dimensional modulational instability in photorefractive media
We study theoretically and experimentally the modulational instability of
broad optical beams in photorefractive nonlinear media. We demonstrate the
impact of the anisotropy of the nonlinearity on the growth rate of periodic
perturbations. Our findings are confirmed by experimental measurements in a
strontium barium niobate photorefractive crystal.Comment: 8 figure
Particle Number Fluctuations in Statistical Model with Exact Charge Conservation Laws
Even though the first momenta i.e. the ensemble average quantities in
canonical ensemble (CE) give the grand canonical (GC) results in large
multiplicity limit, the fluctuations involving second moments do not respect
this asymptotic behaviour. Instead, the asymptotics are strikingly different,
giving a new handle in study of statistical particle number fluctuations in
relativistic nuclear reactions. Here we study the analytical large volume
asymptotics to general case of multispecies hadron gas carrying fixed baryon
number, strangeness and electric charge. By means of Monte Carlo simulations we
have also studied the general multiplicity probability distributions taking
into account the decay chains of resonance states.Comment: 4 pages, 2 figures. The report of the talk given in Strangeness in
Quark Matter 2004, Cape Town. Submitted to J. Phys. G: Nucl. Part. Phy
High-flux ptychographic imaging using the new 55 µm-pixel detector `Lambda' based on the Medipix3 readout chip
Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector `Lambda' has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick-Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 105 photons nm-2 s-1 or a flux of ~1010 photons s-1 on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3-4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield
Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging
We present results of a coherent x-ray diffractive imaging experiment
performed on a single colloidal crystal grain. The full three-dimensional (3D)
reciprocal space map measured by an azimuthal rotational scan contained several
orders of Bragg reflections together with the coherent interference signal
between them. Applying the iterative phase retrieval approach, the 3D structure
of the crystal grain was reconstructed and positions of individual colloidal
particles were resolved. As a result, an exact stacking sequence of hexagonal
close-packed layers including planar and linear defects were identified.Comment: 8 pages, 5 figure
Wave function recombination instability in cold atom interferometers
Cold atom interferometers use guiding potentials that split the wave function
of the Bose-Einstein condensate and then recombine it. We present theoretical
analysis of the wave function recombination instability that is due to the weak
nonlinearity of the condensate. It is most pronounced when the accumulated
phase difference between the arms of the interferometer is close to an odd
multiple of PI and consists in exponential amplification of the weak ground
state mode by the strong first excited mode. The instability exists for both
trapped-atom and beam interferometers.Comment: 4 pages, 5 figure
Observation of dipole-mode vector solitons
We report on the first experimental observation of a novel type of optical
vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically.
We show that these vector solitons can be generated in a photorefractive medium
employing two different processes: a phase imprinting, and a symmetry-breaking
instability of a vortex-mode vector soliton. The experimental results display
remarkable agreement with the theory, and confirm the robust nature of these
radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit
Entanglement between particle partitions in itinerant many-particle states
We review `particle partitioning entanglement' for itinerant many-particle
systems. This is defined as the entanglement between two subsets of particles
making up the system. We identify generic features and mechanisms of particle
entanglement that are valid over whole classes of itinerant quantum systems. We
formulate the general structure of particle entanglement in many-fermion ground
states, analogous to the `area law' for the more usually studied entanglement
between spatial regions. Basic properties of particle entanglement are first
elucidated by considering relatively simple itinerant models. We then review
particle-partitioning entanglement in quantum states with more intricate
physics, such as anyonic models and quantum Hall states.Comment: review, about 20 pages. Version 2 has minor revisions
On the Properties of Two Pulses Propagating Simultaneously in Different Dispersion Regimes in a Nonlinear Planar Waveguide
Properties of two pulses propagating simultaneously in different dispersion
regimes, anomalous and normal, in a Kerr-type planar waveguide are studied in
the framework of the nonlinear Schroedinger equation. Catastrophic
self-focusing and spatio-temporal splitting of the pulses is investigated. For
the limiting case when the dispersive term of the pulse propagating in the
normal dispersion regime can be neglected an indication of a possibility of a
stable self-trapped propagation of both pulses is obtained.Comment: 18 pages (including 15 eps figures
- …