30 research outputs found

    Specific ADAM10 inhibitors localize in exosome-like vesicles released by Hodgkin lymphoma and stromal cells and prevent sheddase activity carried to bystander cells

    Get PDF
    Shedding of ADAM10 substrates, like TNFa, MICA or CD30, is reported to affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. Soluble forms of these molecules and ADAM10 can be carried and spread in the microenvironment by exosomes released by tumor cells. We reported new ADAM10 inhibitors able to prevent MICA shedding in Hodgkin lymphoma (HL), leading to recognition of HL cells by cytotoxic lymphocytes. In this paper, we show that the mature bioactive form of ADAM10 is released in exosome-like vesicles (ExoV) by HL cells and lymph node mesenchymal stromal cells (MSC). We demonstrate that ADAM10 inhibitors are released in ExoV by MSC or HL cells, endocytosed by bystander cells and localized in the endolysosomal compartment in HL MSC. ExoV released by HL cells can enhance MICA shedding by MSC, while ExoV from MSC induce TNFa or CD30 shedding by HL cells. Of note, ADAM10 sheddase activity carried by ExoV is prevented with the ADAM10 inhibitors LT4 and CAM29, pretreating either the ExoVproducing or the ExoV-receiving cells. In particular, both inhibitors reduce CD30 shedding maintaining the anti-tumor effects of the ADC Brentuximab-Vedotin or the anti-CD30 Iratumumab on HL cells. Thus, spreading of ADAM10 activity due to ExoV can result in the release of cytokines, like TNFa,a lymphoma growth factor, or soluble molecules, like sMICA or sCD30, that potentially interfere with host immune surveillance or immunotherapy. ADAM10 blockers can interfere with this process, allowing the development of anti-lymphoma immune response and/or efficient ADC-based or human antibody-based immunotherapy

    Strategic memory deficits in attention deficit disorder with hyperactivity participants: The role of executive processes

    No full text
    Children with attention deficit disorder and hyperactivity (ADHD) may present with a variety of cognitive deficits, including memory impairment. This study examines the strategic memory of Italian 6th to 8th graders diagnosed with ADHD and contrasts them with matched controls. In a series of 3 experiments, participants were administered a 4\u2010trial free recall task of partially categorizable and partially repeated material. ADHD participants had less recall and a higher number of intrusions. However, when they were informed and assisted in the use of the appropriate strategy (Experiment 2), they performed as well as controls. A difference between groups appeared again when only information, but not assistance was given to the participants on the use of the strategy (Experiment 3). Other executive control measures, such as, a planning\u2010mon\u2010itoring task (Experiment 2) and the Tower of London task (Experiment 3), differentiated between groups and predicted memory performance better than scores on Metamemory Questionnaires. Differentiation of ADHD children in subgroups based on the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) classification (Experiment 3) did not yield significant differences between subgroups. The results were interpreted in terms of a distinction between knowledge and an executive component. The ADHD syndrome seems particularly associated with a deficit in the latter component

    Optimization of Fibrin Scaffolds to Study Friction in Cultured Mesothelial Cells

    No full text
    To study the friction of cell monolayers avoiding damage due to stress concentration, cells can be cultured on fibrin gels, which have a structure and viscoelasticity similar to that of the extracellular matrix. In the present research, we studied different gel compositions and surface coatings in order to identify the best conditions to measure friction in vitro. We examined the adhesion and growth behavior of mesothelial cell line MET-5A on fibrin gels with different fibrinogen concentrations (15, 20, and 25 mg/mL) and with different adhesion coatings (5 μg/mL fibronectin, 10 μg/mL fibronectin, or 10 μg/mL fibronectin + 10 μg/mL collagen). We also investigated whether different substrates influenced the coefficient of friction and the ability of cells to stick to the gel during sliding. Finally, we studied the degradation rates of gels with and without cells. All substrates tested provided a suitable environment for the adherence and proliferation of mesothelial cells, and friction measurements did not cause significant cell damage or detachment. However, in gels with a lower fibrinogen concentration, cell viability was higher and cell detachment after friction measurement was lower. Fibrinolysis was negligible in all the substrates tested

    Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens. An in vivo study mice

    No full text
    Vulnerability to develop drug abuse could be related to differential sensitivity to some central effects of such drugs. Several results point to mesoaccumbens dopamine release elicited by psychostimulants as the rate-limiting factor of their reinforcing, hence addictive, effects and to locomotor stimulation as an indirect index of such a response. In this paper, we report parallel differences in sensitivity to amphetamine-induced locomotor stimulation and mesoaccumbens dopamine release in two inbred strains of mice characterized by differential susceptibility to develop drug self-administration. Thus, mice of the C57BL/6 strain responded with a simultaneous increase of locomotor activity and mesoaccumbens dopamine release measured by intracerebral microdialysis to amphetamine challenge. On the contrary, mice of the DBA/2 strain did not present either response. No strain differences in mesoaccumbens dopamine outflow or 3,4-dihydroxyphenylacetic acid concentration were found in basal conditions or following saline challenges. However, mice of the C57BL/6 strain were characterized by higher levels of accumbal homovanillic acid in basal conditions, in line with the results obtained in rats rendered more sensitive to the locomotor effects of psychostimulants by repeated administration. Finally, in both strains amphetamine decreased accumbal levels of the two metabolites. These results suggest that genotype modulates the locomotor effects of amphetamine through sensitivity of the mesoaccumbens system to amphetamine-stimulated dopamine release. Moreover, they provide a basis to test the hypothesis of mesoaccumbens dopamine involvement in individual susceptibility to the addictive effects of drugs by quantitative trait loci analysis in recombinant inbred strains

    Control of interleukin-18 secretion by dendritic cells: role of calcium influxes

    Get PDF
    AbstractHere we show that dendritic cells accumulate the precursor form of the leaderless secretory protein interleukin-18 (pro-interleukin-18) in the cell cytosol and in organelles co-fractionating with endolysosomes. Upon antigen specific contact with T lymphocytes, particulated pro-interleukin-18 decreases rapidly, and the cytokine appears extracellularly, suggesting that exocytosis of pro-interleukin-18-containing organelles is induced. Exocytosis of secretory lysosomes is modulated by calcium: in agreement with this, calcium influx results in secretion of pro-interleukin-18. In turn, pro-interleukin-18 secretion induced by T cells is prevented by the calcium channel blocker nifedipine. Our results demonstrate a novel, calcium-mediated mechanism of post-translational regulation of secretion for interleukin-18, that allows a fast release of the cytokine

    Study of the anatase-rutile transformation in TiO2 powders obtained by laser-induced synthesis

    No full text
    Powder samples of pure anatase were produced using laser-induced pyrolysis of titanium alkoxides, and the catalysts were prepared using conventional wet impregnation methods. The diffraction patterns were interpreted in microstructural terms by Fourier analysis of their peak profiles. The transition temperature for the anatase-rutile transition in these catalysts was found between 500° and 550 °C. For the reflections of the anatase phase, a decrease of their Bragg (2θ) positions was observed up to 550 °C when the presence of the rutile phase becomes important. The response of the anatase structure to the thermal treatment is anisotropic with the c-axis showing the highest sensitivity to the observed expansion of the lattice. The rutile Bragg reflections are sharper than those of the anatase phase. The corresponding microstructural parameters indicate that, in all cases, the transformation is accompanied by an increase of the crystallites and/or of the lattice perfection. The evolution of these parameters is influenced by the presence of vanadium. The V-treated surface layer must be particularly distorted and apparently act as a restraint to perfecting by thermal treatments. Only the transition to rutile is capable of overcoming that restraint by allowing crystallite growth at the expense of the smaller and distorted anatase crystallites

    Intrastriatal injection of D1 or D2 dopamine agonists affects glucose utilization in both the direct and indirect pathways of the rat basal ganglia

    No full text
    Two distinct pathways are thought to connect the striatum to the basal ganglia output nuclei: a direct pathway, originating from neurons bearing dopamine, D1 receptors and an indirect pathway, originating from neurons expressing D2 receptors. It has been recently suggested, however, that dopamine receptor sub-types may co-localize and co-operate in the striatum. We sought to verify the functional segregation of the two pathways by measuring cerebral glucose utilization following intrastriatal injection of selective D1 (SKF 38393), D2 (quinpirole), or non-selective indirect (amphetamine) and direct (apomorphine) dopamine agonists, in freely-moving rats. All drugs - regardless of receptor selectivity - reduced glucose utilization in nuclei of both the direct and indirect pathways, thus lending further support to the existence of a functional co-operation of striatal D1 and D2 receptors. © 2001 Published by Elsevier Science Ireland Ltd

    The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist

    No full text
    We have characterized the in vitro pharmacological profile of the new potent and selective A2a adenosine receptor antagonist SCH 58261 [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2, 4-triazolo[1,5-c]pyrimidine]. In binding studies on rat and bovine brain tissues, SCH 58261 showed affinity in the low nanomolar range at A2a adenosine striatal receptors and good A2a adenosine vs. A1 adenosine selectivity (about 50- to 100-fold in rat and bovine brain, respectively). SCH 58261 did not show affinity for either the A3 adenosine receptor or other receptors at concentrations up to 1 microM. Saturation experiments on rat A1 and A2a adenosine receptors indicated the competitive nature of the antagonism. SCH 58261 antagonized competitively the effects induced by the A2a adenosine-selective agonist CGS 21680 (2-[4-(2-carboxyethyl)-phenethyl-amino]-5'-N- ethylcarboxamidoadenosine) in two functional assays, such as inhibition of rabbit platelet aggregation and porcine coronary artery relaxation. Specifically, the compound showed pA2 values of 7.9 and 9.5, respectively. SCH 58261 (300 nM) failed to antagonize 5'-N-ethylcarboxamidoadenosine-induced vasorelaxation in the isolated guinea pig aorta, a response mediated by A2b adenosine receptors. Likewise, at the same concentration, the compound weakly inhibited the A1 adenosine-mediated negative chronotropic effect induced by 2-chloro-N6-cyclopentyladenosine in the isolated rat atria. These data show that SCH 58261 is a potent and selective non-xanthine A2a adenosine antagonist which has competitive properties in biological responses mediated by this receptor subtype. The compound is of interest for investigating the biological role of A2a adenosine receptors and deserves further attention to clarify the therapeutic potential of A2a antagonists
    corecore