2,887 research outputs found

    Inhibitory mechanism of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol synthesis with Klebsiella pneumoniae

    Get PDF
    3-Hydroxypropionaldehyde accumulation may cause the cessation of 1,3-propanediol sustained production with glycerol by Klebsiella pneumoniae. The impeller tip speed shift from higher to lower speed at glycerol excess or the pulsed glycerol feeding could lead to an abrupt increase of the 3- hydroxypropionaldehyde concentration (up to 10 mmol/l) in 10 min. The intracellular consequence of the 3-hydroxypropionaldehyde accumulation has not yet been elucidated. The rapid accumulation of 3- hydroxypropionaldehyde relying on the impeller tip speed shift was employed to investigate the influences of 3-hydroxypropionaldehyde to the activities of nine key enzymes related to glycerol metabolism, CO2 and O2 levels in off-gas, cell growth and 1,3-propanediol synthesis. Compared with that at 1.19 mmol/l 3-hydroxypropionaldehyde in broth, the residual enzymatic activities of the nine key enzymes ranged from 9.44 to 74.68% in the cultures at 7.5 mmol/l 3-hydroxypropionaldehyde in broth. The inhibitions of cell growth and the 1,3-propanediol synthesis were unnoticeable at the low level of 3- hydroxypropionaldehyde. By contrast, the CO2 and O2 levels changes in off-gas response to the 3- hydroxypropionaldehyde accumulation were less than 15 min. These results suggest that 3- hydroxypropionaldehyde inhibited the growth and metabolism of K. pneumoniae in a more complicated manner.Keywords: Fermentation, glycerol, 3-hydroxypropionaldehyde, Klebsiella pneumoniae, 1,3-propanediol

    Effect of iron loading on isolated rat myocardium

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Hydrogen peroxide augments the injury effect of iron on the isolated rat heart and cardiomyocytes

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    铁调素(Hepcidin)在骨质矿化中的作用

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Hemojuvelin (HJV) : A newly discovered regulating protein of iron metabolism

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    Recent progress in organic-based radiative cooling materials: fabrication methods and thermal management properties

    Get PDF
    Organic-based materials capable of radiative cooling have attracted widespread interest in recent years due to their ease of engineering and good adaptability to different application scenarios. As a cooling material for walls, clothing, and electronic devices, these materials can reduce the energy consumption load of air conditioning, improve thermal comfort, and reduce carbon emissions. In this paper, an overview is given of the current fabrication strategies of organic-based radiative cooling materials, and of their properties. The methods and joint thermal management strategies including evaporative cooling, phase-change materials, fluorescence, and light-absorbing materials that have been demonstrated in conjunction with a radiative cooling function are also discussed. This review provides a comprehensive overview of organic-based radiative cooling, exemplifying the emerging application directions in this field and highlighting promising future research directions in the field

    Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays

    Get PDF
    Silicon dioxide (SiO2) is a prominent candidate for radiative cooling applications due to its low absorption in solar wavelengths (0.25-2.5 µm) and exceptional stability. However, its bulk phonon-polariton band results in a strong reflection peak in the atmospheric transparency window (8-13 µm), making it difficult to meet the requirements for sub-ambient passive radiative cooling. Herein, we demonstrate that SiO2 micropillar arrays can effectively suppress infrared reflection at 8-13 µm and enhance the infrared emissivity by optimizing the micropillar array structure. We created a pattern with a height, spacing, and diameter of approximately 1.45 µm, 0.15 µm, and 0.35 µm, respectively, on top of a bulk SiO2 substrate using reactive ion etching. The resulting surface phonon coupling of the micropillar array led to an increase in the thermal emissivity from 0.79 to 0.94. Outdoor tests show that the SiO2 cooler with an optimized micropillar array can generate an average temperature drop of 5.5 °C throughout the daytime underneath an irradiance of 843.1 W/m^2 at noon. Furthermore, the micropillar arrays endow the SiO2 cooler with remarkable hydrophobic properties, attributed to the formation of F/C compounds introduced during the etching process. Finally, we also replicated the micropillar pattern onto the surface of industrial optical solar reflectors (OSRs), demonstrating similar emissivity and hydrophobicity enhancements. Our findings revealed an effective strategy for modifying the thermal management features of durable SiO2 layers, which can be harnessed to cool OSRs and other similar sky-facing devices

    Designer SiO2 Metasurfaces for Efficient Passive Radiative Cooling

    Get PDF
    In recent years, an increasing number of passive radiative cooling materials are proposed in the literature, with several examples relying on the use of silica (SiO2) due to its unique stability, non-toxicity, and availability. Nonetheless, due to its bulk phonon-polariton band, SiO2 presents a marked reflection peak within the atmospheric transparency window (8-13 mu m), leading to an emissivity decrease that poses a challenge to fulfilling the criteria for sub-ambient passive radiative cooling. Thus, the latest developments in this field are devoted to the design of engineered SiO2 photonic structures, to increase the cooling potential of bulk SiO2 radiative coolers. This review seeks to identify the most effective photonic design and fabrication strategies for SiO2 radiative emitters by evaluating their cooling efficacy, as well as their scalability, providing an in-depth analysis of the fundamental principles, structural models, and results (both numerical and experimental) of various types of SiO2 radiative coolers

    Effect of Interfacial Bonds on the Morphology of InAs QDs Grown on GaAs (311) B and (100) Substrates

    Get PDF
    The morphology and transition thickness (tc) for InAs quantum dots (QDs) grown on GaAs (311) B and (100) substrates were investigated. The morphology varies with the composition of buffer layer and substrate orientation. Andtcdecreased when the thin InGaAs was used as a buffer layer instead of the GaAs layer on (311) B substrates. For InAs/(In)GaAs QDs grown on high miller index surfaces, both the morphology andtccan be influenced by the interfacial bonds configuration. This indicates that buffer layer design with appropriate interfacial bonds provides an approach to adjust the morphologies of QDs grown on high miller surfaces
    corecore