1,479 research outputs found

    Evolution of locally excited avalanches in semiconductors

    Full text link
    We show that semiconductor avalanche photodiodes can exhibit diminutive amplification noise during the early evolution of avalanches. The noise is so low that the number of locally excited charges that seed each avalanche can be resolved. These findings constitute an important first step towards realization of a solid-state noiseless amplifier. Moreover, we believe that the experimental setup used, \textit{i.e.}, time-resolving locally excited avalanches, will become a useful tool for optimizing the number resolution

    Efficient photon number detection with silicon avalanche photodiodes

    Full text link
    We demonstrate an efficient photon number detector for visible wavelengths using a silicon avalanche photodiode. Under subnanosecond gating, the device is able to resolve up to four photons in an incident optical pulse. The detection efficiency at 600 nm is measured to be 73.8%, corresponding to an avalanche probability of 91.1% of the absorbed photons, with a dark count probability below 1.1x10^{-6} per gate. With this performance and operation close to room temperature, fast-gated silicon avalanche photodiodes are ideal for optical quantum information processing that requires single-shot photon number detection

    Continuous operation of high bit rate quantum key distribution

    Full text link
    We demonstrate a quantum key distribution with a secure bit rate exceeding 1 Mbit/s over 50 km fiber averaged over a continuous 36-hours period. Continuous operation of high bit rates is achieved using feedback systems to control path length difference and polarization in the interferometer and the timing of the detection windows. High bit rates and continuous operation allows finite key size effects to be strongly reduced, achieving a key extraction efficiency of 96% compared to keys of infinite lengths.Comment: four pages, four figure

    Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes

    Full text link
    We demonstrate the use of two high speed avalanche photodiodes in exploring higher order photon correlations. By employing the photon number resolving capability of the photodiodes the response to higher order photon coincidences can be measured. As an example we show experimentally the sensitivity to higher order correlations for three types of photon sources with distinct photon statistics. This higher order correlation technique could be used as a low cost and compact tool for quantifying the degree of correlation of photon sources employed in quantum information science

    Avoiding the Detector Blinding Attack on Quantum Cryptography

    Full text link
    We show the detector blinding attack by Lydersen et al [1] will be ineffective on most single photon avalanche photodiodes (APDs) and certainly ineffective on any detectors that are operated correctly. The attack is only successful if a redundant resistor is included in series with the APD, or if the detector discrimination levels are set inappropriately

    Directly phase-modulated light source

    Get PDF
    The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses

    Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution

    Get PDF
    Fast gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high bit rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system or even an entire QKD network. Here, we investigate the behavior of a gigahertz-gated, self-differencing InGaAs APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modelling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD

    Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution

    Get PDF
    Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD

    Intrinsic mitigation of the after-gate attack in quantum key distribution through fast-gated delayed detection

    Get PDF
    The information theoretic security promised by quantum key distribution (QKD) holds as long as the assumptions in the theoretical model match the parameters in the physical implementation. The superlinear behaviour of sensitive single-photon detectors represents one such mismatch and can pave the way to powerful attacks hindering the security of QKD systems, a prominent example being the after-gate attack. A longstanding tenet is that trapped carriers causing delayed detection can help mitigate this attack, but despite intensive scrutiny, it remains largely unproven. Here we approach this problem from a physical perspective and find new evidence to support a detector's secure response. We experimentally investigate two different carrier trapping mechanisms causing delayed detection in fast-gated semiconductor avalanche photodiodes, one arising from the multiplication layer, the other from the heterojunction interface between absorption and charge layers. The release of trapped carriers increases the quantum bit error rate measured under the after-gate attack above the typical QKD security threshold, thus favouring the detector's inherent security. This represents a significant step to avert quantum hacking of QKD systems
    corecore