1,233 research outputs found

    Level Repulsion in Constrained Gaussian Random-Matrix Ensembles

    Full text link
    Introducing sets of constraints, we define new classes of random-matrix ensembles, the constrained Gaussian unitary (CGUE) and the deformed Gaussian unitary (DGUE) ensembles. The latter interpolate between the GUE and the CGUE. We derive a sufficient condition for GUE-type level repulsion to persist in the presence of constraints. For special classes of constraints, we extend this approach to the orthogonal and to the symplectic ensembles. A generalized Fourier theorem relates the spectral properties of the constraining ensembles with those of the constrained ones. We find that in the DGUEs, level repulsion always prevails at a sufficiently short distance and may be lifted only in the limit of strictly enforced constraints.Comment: 20 pages, no figures. New section adde

    The Epstein-Glaser approach to pQFT: graphs and Hopf algebras

    Full text link
    The paper aims at investigating perturbative quantum field theory (pQFT) in the approach of Epstein and Glaser (EG) and, in particular, its formulation in the language of graphs and Hopf algebras (HAs). Various HAs are encountered, each one associated with a special combination of physical concepts such as normalization, localization, pseudo-unitarity, causality and an associated regularization, and renormalization. The algebraic structures, representing the perturbative expansion of the S-matrix, are imposed on the operator-valued distributions which are equipped with appropriate graph indices. Translation invariance ensures the algebras to be analytically well-defined and graded total symmetry allows to formulate bialgebras. The algebraic results are given embedded in the physical framework, which covers the two recent EG versions by Fredenhagen and Scharf that differ with respect to the concrete recursive implementation of causality. Besides, the ultraviolet divergences occuring in Feynman's representation are mathematically reasoned. As a final result, the change of the renormalization scheme in the EG framework is modeled via a HA which can be seen as the EG-analog of Kreimer's HA.Comment: 52 pages, 5 figure

    Phase Fluctuations near the Chiral Critical Point

    Full text link
    The Helmholtz free energy density is parametrized as a function of temperature and baryon density near the chiral critical point of QCD. The parametrization incorporates the expected critical exponents and amplitudes. An expansion away from equilibrium states is achieved with Landau theory. This is used to calculate the probability that the system is found at a density other than the equilibrium one. Such fluctuations are predicted to be very large in heavy ion collisions.Comment: 7 pages, 8 figures, Winter Workshop on Nuclear Dynamics 201

    Helfrich-Canham bending energy as a constrained non-linear sigma model

    Full text link
    The Helfrich-Canham bending energy is identified with a non-linear sigma model for a unit vector. The identification, however, is dependent on one additional constraint: that the unit vector be constrained to lie orthogonal to the surface. The presence of this constraint adds a source to the divergence of the stress tensor for this vector so that it is not conserved. The stress tensor which is conserved is identified and its conservation shown to reproduce the correct shape equation.Comment: 5 page

    From Luttinger liquid to Altshuler-Aronov anomaly in multi-channel quantum wires

    Full text link
    A crossover theory connecting Altshuler-Aronov electron-electron interaction corrections and Luttinger liquid behavior in quasi-1D disordered conductors has been formulated. Based on an interacting non-linear sigma model, we compute the tunneling density of states and the interaction correction to the conductivity, covering the full crossover.Comment: 15 pages, 3 figures, revised version, accepted by PR

    Fermions and Loops on Graphs. II. Monomer-Dimer Model as Series of Determinants

    Full text link
    We continue the discussion of the fermion models on graphs that started in the first paper of the series. Here we introduce a Graphical Gauge Model (GGM) and show that : (a) it can be stated as an average/sum of a determinant defined on the graph over Z2\mathbb{Z}_{2} (binary) gauge field; (b) it is equivalent to the Monomer-Dimer (MD) model on the graph; (c) the partition function of the model allows an explicit expression in terms of a series over disjoint directed cycles, where each term is a product of local contributions along the cycle and the determinant of a matrix defined on the remainder of the graph (excluding the cycle). We also establish a relation between the MD model on the graph and the determinant series, discussed in the first paper, however, considered using simple non-Belief-Propagation choice of the gauge. We conclude with a discussion of possible analytic and algorithmic consequences of these results, as well as related questions and challenges.Comment: 11 pages, 2 figures; misprints correcte

    Lattice QCD without topology barriers

    Get PDF
    As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.Comment: Plain TeX source, 26 pages, 4 figures include

    Field theoretical analysis of adsorption of polymer chains at surfaces: Critical exponents and Scaling

    Full text link
    The process of adsorption on a planar repulsive, "marginal" and attractive wall of long-flexible polymer chains with excluded volume interactions is investigated. The performed scaling analysis is based on formal analogy between the polymer adsorption problem and the equivalent problem of critical phenomena in the semi-infinite ϕ4|\phi|^4 n-vector model (in the limit n0n\to 0) with a planar boundary. The whole set of surface critical exponents characterizing the process of adsorption of long-flexible polymer chains at the surface is obtained. The polymer linear dimensions parallel and perpendicular to the surface and the corresponding partition functions as well as the behavior of monomer density profiles and the fraction of adsorbed monomers at the surface and in the interior are studied on the basis of renormalization group field theoretical approach directly in d=3 dimensions up to two-loop order for the semi-infinite ϕ4|\phi|^4 n-vector model. The obtained field- theoretical results at fixed dimensions d=3 are in good agreement with recent Monte Carlo calculations. Besides, we have performed the scaling analysis of center-adsorbed star polymer chains with ff arms of the same length and we have obtained the set of critical exponents for such system at fixed d=3 dimensions up to two-loop order.Comment: 22 pages, 12 figures, 4 table

    From quantum to classical dynamics: The relativistic O(N)O(N) model in the framework of the real-time functional renormalization group

    Get PDF
    We investigate the transition from unitary to dissipative dynamics in the relativistic O(N)O(N) vector model with the λ(φ2)2\lambda (\varphi^{2})^{2} interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent zz in the limit of large temperatures and in 2d42 \leq d \leq 4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.Comment: 32 pages, 12 captioned figures; revised and extended version accepted for publication in PR

    Nonlinear wave-packet dynamics in a disordered medium

    Get PDF
    In this article we develop an effective theory of pulse propagation in a nonlinear and disordered medium. The theory is formulated in terms of a nonlinear diffusion equation. Despite its apparent simplicity this equation describes novel phenomena which we refer to as "locked explosion" and "diffusive" collapse. In this sense the equation can serve as a paradigmatic model, that can be applied to such distinct physical systems as laser beams propagating in disordered photonic crystals or Bose-Einstein condensates expanding in a disordered environment
    corecore